
Semi-Synthetic Data Set Generation for Security Software Evaluation

Florian Skopik, Giuseppe Settanni, Roman Fiedler, Ivo Friedberg

Safety and Security Department

AIT Austrian Institute of Technology, Austria

firstname.lastname@ait.ac.at

Abstract—Threats to modern ICT systems are rapidly chang-
ing these days. Organizations are not mainly concerned about
virus infestation, but increasingly need to deal with targeted
attacks. This kind of attacks are specifically designed to stay
below the radar of standard ICT security systems. As a
consequence, vendors have begun to ship self-learning intrusion
detection systems with sophisticated heuristic detection engines.
While these approaches are promising to relax the serious
security situation, one of the main challenges is the proper
evaluation of such systems under realistic conditions during
development and before roll-out. Especially the wide variety
of configuration settings makes it hard to find the optimal
setup for a specific infrastructure. However, extensive testing
in a live environment is not only cumbersome but usually also
impacts daily business. In this paper, we therefore introduce an
approach of an evaluation setup that consists of virtual compo-
nents, which imitate real systems and human user interactions
as close as possible to produce system events, network flows and
logging data of complex ICT service environments. This data
is a key prerequisite for the evaluation of modern intrusion
detection and prevention systems. With these generated data
sets, a system’s detection performance can be accurately rated
and tuned for very specific settings.

Keywords-anomaly detection evaluation, synthetic data set
generation, scalable system behavior model

I. INTRODUCTION

The security landscape has massively changed in the

recent years. The ever increasing complexity of network

systems, software and services, as well as their increasing

integration and dependencies has led to novel forms of cyber

security attacks. While just some years ago, the deployment

of general cyber defense systems, such as firewalls and

virus scanners, was mostly sufficient to protect against

the most common threats, the situation is different today.

Organizations are not so much concerned about spreading

viruses, which can be properly detected using signature-

based virus scanners, but have to fight more and more against

quite targeted attacks. Vulnerability black markets [1], APTs

[2] and the wide usage of malware generation toolkits [3]

has led to a completely changed threat landscape. Therefore

new defense technologies are being developed, such as the

application of various promising heuristics in novel intrusion

detection systems, and log-level event correlation across

systems for advanced anomaly detection.

However, the challenge is, since attacks can be quite

complex and deeply buried in the usual network traffic,

how to comprehensively test and evaluate such systems

in both phases (i) during development to enhance their

effectiveness towards new attack methods/vectors through

continuous algorithmic improvements, and then (ii) before

deployment in order to tune configurations and adapt them

to particular environments, e.g. to meet performance criteria.

Due to the lack of data sets from realistic attack scenarios,

an easy performance evaluation and comparison is much

harder than in other computer science domains, e.g. image

categorization or semantic text analysis.

Raw data sets from real systems, such as log files or

packet captures, offer only limited utility for a comprehen-

sive evaluation. Mostly the data flows and behavior of real

systems are not fully known, and do not consist of the kind

of attack signatures that the system under test is supposed

to discover. Additionally, privacy concerns mostly hinder the

direct adoption of real data sets. On the other hand, using

purely synthetic data does not meet realistic test conditions,

since the dynamics and complexity of real world systems

are virtually impossible to be modeled in data generators.

Eventually, we motivate the need for a reliable approach to

merge real log data/network data with attack traces.

We therefore propose an approach to ‘semi-synthetic’ log

data generation that consists of a wide variety of components

to generate realistic and scalable data sets for the evaluation

of novel anomaly detection mechanisms. This approach uses

virtual infrastructure setups and artificial human stimuli to

generate log and network flow data that comply to real data

(regarding frequency of events, dynamics, variability etc.).

Additionally, numerous kinds of attacks can be performed on

these virtual environments whose occurrence and properties

are well known. We foresee our system for the generation

of reference data sets, with well known characteristics that

are used to test and compare the efficiency and effectiveness

of different security systems.

In this work, we discuss the following contributions:

• Semi-synthetic Data Generation deals with the com-

bined application of virtual/artificial components and

real user input models.

• System Design and Architecture highlights our refer-

ence design for such a system, including the underlying

design decisions.

• Implementation and Evaluation outlines the applicabil-

ity of our approach and, in particular, shows the usage

of an open source solution that has been evaluated and

successfully applied in course of a research project.

The remainder of the paper is organized as follows.

Related work is covered in Section II. Section III shows

challenges and the problem statement as well as highlights

the overall concept and architecture. Then, Section IV in-

troduces the current implementation and the accompanying

ready-to-use software package. Section V deals with the

applicability of the proposed solutions. Finally, Section VI

concludes the paper.

II. BACKGROUND AND RELATED WORK

Today, more and more network security solutions rely

on the timely event correlation and analysis of system log

files from all various sources, not only network components,

but also higher level application severs and the like. This

approach is especially promising to detect quite complex

attacks, such as APT attacks (advanced persistent threats)

[2]. Therefore we need a testbed that is not only capable

of emulating the network layer but also these higher level

services and an integrated logging infrastructure.

Unfortunately the availability of testbeds with the required

properties, including realistic scale, infrastructure and user

behavior, combined with a holistic knowledge and control

on occurring attacks (e.g., SQL injection attacks [4]) is quite

limited. The paper on ViSe [5] describes a virtual security

testbed, which is meant to make security testing significantly

easier, as a virtual environment allows to switch back to

previous snapshots once a malware has infiltrated and/or

destroyed parts of a system. This paper further surveys

similar approaches. The Lincoln Adaptable Real-time Infor-

mation Assurance Testbed (LARIAT) [6], represents one of

the first major attempt to create a comprehensive platform

for testing intrusion detection systems. Lincoln Laboratory

SIMulator (LLSIM) [7] is a fully virtualized descendant of

LARIAT. Written in Java, it provides a highly-customizable

environment capable of simulating hundreds of nodes on

commodity hardware. TIDeS, the Testbed for evaluation of

Intrusion DEtection Systems [8], seeks to quantify the evalu-

ation process when determining the appropriate type of IDS

to use given a specific network topology. The Cyber DEfense

Technology Experimental Research testbed (DETER) [9] is

one of the leading testbeds for security researchers, which

emerged from a partnership project between the National

Science Foundation, Department of Homeland Security,

USC, UC Berkeley, and McAfee Research. Furthermore,

there are dedicated security testbeds for infrastructures dif-

ferent from regular office networks, e.g., SCADA in the

domain of automation systems [10].

While some of these testbeds have attracted thousands of

researchers to evaluate their prototype systems, we argue that

all these approaches are quite network-centric. They are the

perfect foundational basis to test pure netflow analysis ca-

pabilities or study how a worm behaves in a certain network

topology and how to counter related attacks. However, since

other approaches, e.g. (AECID [11], operate on a higher

log level layer, we need also facilities to include the virtual

human users as an essential component in the whole socio-

technical system. This is the strength of our testbed design.

III. PROBLEM STATEMENT AND CONTRIBUTIONS

A. Problem Statement

In order to test novel monitoring and security systems,

such as anomaly detection algorithms and IDSs, we need an

approach to create realistic test data with a wide variety of

properties in context of different scenarios. Essentially, this

data to be used could origin from three different sources,

being either synthetically produced, from a real system, or

from a semi-synthetic approach. In the latter case, a real

software infrastructure is utilized, that however runs in a

virtual environment and is operated by virtual users, instead

of real ones. We argue that this approach offers a reasonable

balance in terms of pros and cons between purely synthetic

data and real data case, as further summarized in Table I.

So, finally the questions we are dealing with is how can

we efficiently generate test data suitable for security systems

evaluation that is produced by real systems but with least

possible human effort?

data origin advantage disadvantage

synthetic easy to (re-)produce, has
desired properties, no
unknown properties

no realistic ‘noise’
mostly simplified situa-
tions

real realistic test basis bad scalability (user in-
put, varying scenarios),
privacy issues, attack on
own system needed

semi-synthetic more realistic than syn-
thetic data, easier to pro-
duce than real data

simplified and biased if
an insufficient synthetic
user model applied

Table I
TEST DATA AND THEIR PROS AND CONS.

B. Application of Semi-Synthetic Data

Among the potential application use cases in the security

domain that rely on strong and sophisticated data input

in their development, testing and deployment phase and

for which we consider our work highly relevant, are the

following:

• Log-Level Anomaly Detection, that runs on a consoli-

dated log base.

• Network Flow Level Inspection, as performed by many

security monitors in corporate networks.

• ICT System Event Correlation, e.g., typical security

incident and event management (SIEM) [12] solutions.

In order to fit to the aforementioned application areas, the

generated data set must fulfill a set of criteria as summarized

in Table II. Due to these requirements we conclude that it is

not feasible to create a realistic data set synthetically only.

We rather propose the application of a real setup, however

in virtual environments for easy adaptability, that is driven

by simulated human user input. We elaborate on the details

in the next section.

data property explanation

large size scale and amounts as they similarly occur
in real networks

realistic feasible in terms of distribution, variability,
random noise, complexity etc.

easy to generate time efficient testing of numerous different
setups

easy to adapt fits to various test conditions and purposes

configurable complexity applicable for basic scenario testing and
detailed evaluations

extensible generation extensible to new features in future systems

Table II
REQUIRED DATA PROPERTIES.

C. Approach Outline to Test Set Generation

Eventually, we chose an approach that instantiates the

building blocks given in Fig. 1 to generate semi-synthetic

data sets with the required properties:

• Regular User Input Simulation are virtual users which

cause the ICT infrastructure components of the environ-

ment to generate logging information with properties as

close as possible to real legitimate users.

• Anomaly Injection deals with the injection of deliberate

failures e.g., caused by a maliciously acting user.

• a customizable Services and Network Infrastructure,

e.g., a network simulation such as Mininet1 and some

typical Web based system on top.

• Logging Facilities to store the produced log files.

• an interface to the System under Test, such as an intru-

sion detection system, and anomaly detection algorithm

or event correlation engine.

System under

Test

Regular User

Input Simulation

Logging Facilities

Services and Network Infrastructure

Anomaly

Injection

user stimuli

single logs

attack/failure

logs

Figure 1. Approach Outline.

D. Approach Novelties

Additionally to numerous testbeds discussed in Section II,

there are also some ready-to-use data sets available (e.g., the

popular DARPA set [13] or [14]), which however are either

outdated or intended for a different use (i.e., netflow analysis

and packet filtering mechanisms). Besides these data sets,

also available testbeds are not immediately applicable in our

1http://mininet.org

case. The reasons for that as well as our contributions are

as follows:

• Service Complexity: in contrast to typical infrastructure

testbeds that focus rather on the correct simulation of

large-scale ICT networks, our approach is designed to

run higher level (Web) services, integrates a working

logging infrastructure and enables the simulation of

not hundreds similar hosts but just a few, but complex,

individual systems.

• User Behavior: Additionally, the approach foresees to

enable simulated user inputs/interactions, and thus to

model real user behavior that is usually not in focus of

network simulation testbeds.

• User Interface Automation: Finally, due to the user-

centric view, our approach integrates modules for sim-

ulating user interface inputs, i.e., defining scripts that

trigger actions in complex Web based interfaces (e.g.,

via a standard Web Browser).

IV. IMPLEMENTATION AND SOFTWARE PACKAGE

After outlining the basic motivation and concept for

semi-synthetic log data generation, we are now going to

demonstrate a concrete instance of this idea here.

A. AECID Data Generation Framework

For our own research in the field of automatic event

correlation of incident detection (short: AECID [11]) we

set up an extensible architecture as given in Fig. 2, which

is distributed over several virtual machines. In particular

this architecture implements the three layer model from the

previous section in the following way:

1) Virtual User Layer: A virtual user is simply real-

ized by using the Selenium Framework2, which is

a browser automation tool. Usually applied for Web

application testing, this tool is the perfect match to

also simulate real user input. A configurable script

issues carefully pre-modeled user actions in varying

time intervals. The occurence of these actions follow

a realistic distribution.

2) Infrastructure Layer: The Web-based system that is

utilized by the virtual users resides in a separate virtual

machine consisting of the Mantis Bug Tracker3 and an

underlying Apache Web server, a backend database,

and support services, e.g mail server, backup, monitor-

ing, firewall. This simple setup can reasonably cover

a wide variety of typical use cases, e.g., users create

new issues, check for updates etc.

3) Logging Layer: The bottom layer consists of a typical

corporate logging infrastructure, again on a separated

machine, where all log messages from the bug tracker,

2http://www.seleniumhq.org
3http://www.mantisbt.org

V
ir
tu

a
l
U

s
e

r
L

a
y
e

r
In

fr
a

s
tr

u
c
tu

re

L
a

y
e
r

notifications,

confirmations

issues,

history

Mail

Server

S
M

T
P

 I
F

Apache WS

Backend

Database

(PostgreSQL)

Logging Logging Logging

S
Q

L
 I
F

raw log

lines

corrected log

lines
annotated

log lines

GrayLog 2

ArchiveLog Line

Annotation

Syslog Post-

Processor

Timestamp

Verif. & Corr.

L
o

g
g

in
g

L
a

y
e

r

A
d

a
p

te
r

Sele-

nium

script

HTTP 1.0 Client

Virtual User 1

Sele-

nium

script

HTTP 1.0 Client

Attacking User

Sele-

nium

script

HTTP 1.0 Client

Virtual User n

Sele-

nium

script

HTTP 1.0 Client

Virtual User 2

V
ir

tu
a

l

M
a

c
h

in
e

 1

V
ir

tu
a

l

M
a

c
h

in
e

 2

V
ir

tu
a

l

M
a

c
h

in
e

 3
..

.m

Mantis Bug

Tracker

HTTP 1.0 Server

Syslog

Daemon

Remote Syslog

raw log

lines

I

III

II

IV

V

SQL Injection Attack

Figure 2. Implemented architecture for semi-synthetic data generation for
a typical Web System (here: Mantis Bug Tracker).

the database and the support services are collected us-

ing rsyslog4. Some facilities to annotate log messages,

e.g., add identifiers for the log source, and correct

timestamps in case of drifting clocks are additionally

provided. Finally, the consolidated logs are managed

by a GrayLog25 database.

Run-Time Perspective. Virtual users utilize the system

according to predefined scripts. These scripts describe the

typical actions that are issued by real users with certain

probability and in certain order. An overview, just to describe

the possible complexity, is given in Fig. 3. All of these use

cases cause typical events on the Mantis platform, the mail

server, firewalls and queries to the SQL database. These

events are logged via rsyslog.

The virtual users cause an adequately realistic load on

the system (in terms of frequency and complexity) which

in turn leads to the generation of dependent log events.

Additionally to this synthetic data of known-good situations,

we can further inject anomalies to stress the system under

test. These anomalies are created by an attacker. In case

of Fig. 2, this means a malicious user performs an SQL

injection attack [4] (#I) which is enabled by a vulnerability

of the Mantis Bug Tracker. Through this vulnerability a non-

legitimate user is able to issue SQL queries and modify

entries he has no privileges for (#II). This behavior causes a

number of anomalies in the log files (#III), such as unusual

SQL queries on the database, abnormal order of commands

issued on the bug tracker which differ from typical use cases,

or missing notification mails on the Web server for certain

changes on the bug tracker. All these information is stored in

a GrayLog2 instance both in raw format (#IV) and in a pre-

processed form (#V), e.g.,with an additional timestamp of

4http://www.rsyslog.com
5http://graylog2.org

recording. Finally, the whole logging data is extracted from

the Graylog2 archive and used to evaluate the detection rate

of the injected anomalies with IDSs and algorithms to-be-

tested.

B. User Interaction Behavior

Creating log files that consist of events caused by real-

istic user behavior is of paramount importance to ensure

solid data sets. We therefore carefully set up user behavior

simulations with respect to issued actions and paths (cf.

Fig. 3), as well as interaction rates, amounts and temporal

properties. For that purpose we studied the typical usage

behavior of Mantis on a real system. Some examples are

given in Table III. Each row shows the current status of

a user in the first field and potential follow-up actions

along with a probability in the second field. This data was

obtained from a Mantis instance in a productive environment

over a long-term investigation of 3 months. Notice that

determined probabilities of course vary depending on the

main occupation of the user, e.g. developer, software tester,

project manager. In order to simplify the situation, we

determined values for a ”virtual average user”.

C. Log Data Handling and Extraction

The correct handling of the recorded log data is crucial

for sound evaluations of the system under test. Clock drifts,

different time zones between network components or even

swapped log lines can render the results useless. For perfor-

mance tests a minimum latency when accessing the newest

log data is also important. This latency is not only influenced

by the required pre-processing of the incoming lines. Access

time at the log archive is also a critical parameter.

Therefore, we propose a two-level log archive infrastruc-

ture as depicted in Fig. 4. Log data is collected at the

network nodes using remote syslog connectors. It is then

received by a central Timestamp Validation and Correction

Unit. The corrected log lines are sent once to a persistent

storage implemented by MongoDB and Graylog2 and a

second time to an in-memory cache for the most recent lines

realized with HSQLDB. A Source Adapter then provides an

interface for the system under test to access the log lines.

Source Adapter

Rsyslog receiver

HSQLDB MongoDB & Graylog 2

Graylog2 AdapterCache Adapter

Timestamp Validation and Correction Unit

Figure 4. Two-Level log archive solution.

Every log source is identified by a unique id (basically

a hierarchically organized url). Messages can be retrieved

by either specifying the desired id, a time span or both (see

interface description in Listing 1).

Virtual

User

Login

50% 50%

Exit

My View

Menu

LogOut

40%
End

Selenium

50%

50%

Task

Selection

60%

20%

80%

Task

Menu

Other

Menu

Report or

Search

Edit Bug

Perform Bug

Reporting Task

Search or

Filter

70%

80%

20%

30%

Select Category

Assign Bug

Enter Bug Info

Submit Report

Filter

Search

20%

80%
Select filter

parameters

Apply Filter

Show Filter

Results

Select Bug ID to search

Search

Show Search Results

Bug

View

Perform

Bug Editing

Task

Submit Bug

Report

Change

Status
Assign

25% 75%

Establish

Relationship

Attach

File
Add Note Submit25% 10%20%

80%

75%

90%

My

View

View

Issues
Main My

Account

Report

Issue

Road

Map

Change

Log
Summary Manage

11% 11%11%
11%

11%
11%

11% 11% 11%

Choose

Bug

Choose Bug Id

Edit Bug

50%

50%

Update User

Update Password

Update

Manage

Preferences

Update

Preferences

Manage Columns

Update Columns

33%

33%

33%

50%

50%Select bug

Figure 3. Mantis use cases of virtual users and the respective likelihoods to follow a specific path through the system.

1 String[] getSourceIDs();
2 ResultSet getMessagesAfterTime
3 (long timestamp, String[] sourceIDs);
4 ResultSet getMessages
5 (long startTime, long endTime, String[] sourceIDs);
6 ResultSet getMessagesAfterId
7 (long messageID, String[] sourceIDs);

Listing 1. Interface provided by the Source Adapter.

Every request is first handled by the Cache Adapter. The

cache contains all lines received in the last x seconds (where

x can be configured). If the query cannot be answered with

cached data only (e.g. the selected time window exceeds

the caching time), the request is instead processed by the

Graylog2 Adapter. This adapter provides access to Graylog2

and MongoDB which implement high-performance indexing

and searching on vast amounts of data.

D. Software Package

Supporting this paper we provide an example infrastruc-

ture package. It consists of three extensible and indepen-

dently replaceable virtual images. All software packages

needed are already pre-installed.

1) Network Image: The first image contains a virtual

network setup. Various services (mail daemon, rsyslog,

database, two independent mantis instances) are already pre-

installed and configured. The remote syslog daemon is used

to extract the log information generated by the services and

to forward them to the analysis image.

2) Analysis Image: The analysis image provides the log

handling infrastructure as described in Section IV-C. The

provided interface is one way to extract the generated semi-

synthetic log data and perform custom evaluations.

3) User Simulation Image: The third and last image is

used to simulate one user on the test network. Running this

image multiple times is a convenient way to simulate users

with different clients and IP addresses. With small adapta-

tions it would also be possible to simulate multiple browser

agents, or completely different statistical user behavior.

V. EVALUATION AND DISCUSSIONS

The evaluation is performed by the means of (i) run-time

performance measurements, (ii) qualitative analysis of the

results, and (iii) a critical review on the applicability.

A. Scenario Description and Test Setup

The virtual user images are entirely deployed on a i7-

3540M @3GHz machine with 8GB of RAM running Win-

dows 7 Enterprise 64 bit. The scenario is composed by N

(N <= 25) VirtualBox (linked copies) virtual machines

running Ubuntu 13.04 and OpenBox. Each virtual machine

has a base memory of 256 MB, its own IP address and

executes at start-up the Semi-synthetic log data generator

tool which emulates the behavior of a single user on Mantis

using Google Chrome Web browser. The execution time is

set to 15 minutes. When the execution time is over, all

the virtual machines are simultaneously shut down. The

log messages analyzed in the test are collected from three

sources: the Web server, the SQL database, and a reverse

proxy. In the described setup we have been able to run tests

with up to 25 simultaneous virtual users on a single machine.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

G
ET/view

.php

G
ET/m

y_view
_page.php

G
ET/css/default.css

G
ET/javascript/m

in/com
m

on.js

G
ET/javascript/m

in/ajax.js

G
ET/im

ages/m
antis_logo.gif

G
ET/im

ages/m
antis_logo_button.gif

G
ET/im

ages/rss.png

G
ET/im

ages/update.png

G
ET/im

ages/priority_norm
al.gif

G
ET/plugin_file.php

G
ET/im

ages/priority_1.gif

G
ET/view

_all_bug_page.php

G
ET/im

ages/attachm
ent.png

G
ET/im

ages/m
inus.png

G
ET/im

ages/plus.png

G
ET/im

ages/priority_2.gif

G
ET/im

ages/priority_3.gif

G
ET/javascript/m

in/xm
lhttprequest.js

G
ET/javascript/m

in/dynam
ic_filters.js

G
ET/javascript/m

in/addLoadEvent.js

G
ET/im

ages/overdue.png

G
ET/im

ages/dow
n.gif

G
ET/javascript/...w

atch.js

PO
ST/checkin.php

G
ET/login_page.php

PO
ST/set_project.php

PO
ST/bugnote_add.php

ra
ti
o
 o

f
s
p
e
c
if
ic

 #
re

q
u
e
s
t
to

 t
o
ta

l
#
re

q
u
e
s
ts

Real Setup
Virtual Setup

Figure 5. Distribution of user requests extracted from a data set from a real productive environment compared to request occurring in the simulation
environment with virtual users. Notice: some user actions are not implemented in the virtual user model (e.g., GET/plugin_file.php). Moreover,
the two outliers result from the fact that the simulated user does not use cookies to keep logged-in and does not use bookmarks to go to specific views
directly, thus requests GET/view_all_bug_page.php much more frequently.

B. Run-Time Performance

Since, the implemented system does not work determinis-

tically, we performed all experiments at least 5 times in order

to investigate the variability of results. Furthermore, in order

to generate some realistic load on the test system (Mantis

and periphery), we set up 5 to 25 virtual users and utilize

different functions, such as browsing through the entered bug

list, viewing details, update details of a bug and so on. In

this setup the backend produces massive amounts of logging

data, e.g., each single Web server request is logged and each

database query issued. Due to the nature of the log data, the

relation of number of users to produced data is virtually

linear. Table IV shows some details about the scale of data

that we produced on a single machine within 15 minutes.

C. Qualitative Analysis

Real Mantis Usage Reference Data set. To rate the

accuracy of our virtual user behavior model, i.e., the order

and frequencies of virtual user actions, we studied the logged

action of a Web server, which runs a Mantis instance that is

used by a real software development team. We extracted the

most important data properties of this real world example

and compared them with the data properties of the logs

produced with our approach.To sum up, the real data set

consists of 291 different types of (Apache) Web server

requests (sites and resources, posting data etc.) and a total of

492832 web server requests, produced by 25 simultaneously

active real users over a period of one regular working

day. The distribution of the request frequencies is strongly

exponential, which means that the 10 most often issued

requests account for half of all requests (approx 250000),

and half of all request types occur less than 30 times.

Semi-Synthetic Data Set. The resulting data set from our

test runs distinguishes only 88 types of requests (compared

to 291 from the real example), since we did not implement

all different actions a real user could perform on the plat-

form. However, we implemented the most frequent ones to

reach a user behavior and system utilization that is quite

similar to the real platform. In total, with 25 simulated users,

we produced between 3063 and 4308 requests (multiple

test runs with varying behavior). Notice that we took care

not to overload the Mantis host system and to implement

request rates that are realistic. This means that the virtual

user remains on Web sites for several minutes like a real

user usually does. However, if one needs to produce large

amounts of log files and realistic request rates are not an

issue, e.g., for retrospective anomaly detection, one could

simply turn up the request rate by shorten the wait-states

of the user behavior model. This would affectively allow to

produce much more data in much shorter periods as a real

system could deliver.

Comparison. Eventually, the quality of the produced log

data sets and the feasibility for a proper security system

evaluation depends on its similarity with real world data.

status follow-up action

LoggedIn user performed login because he wants to operate
on bugs (TaskSelection 60%) or he wants to analyze
his issues (MyViewMenu) and then exit (EndSele-
nium 40%).

TaskSelection work on bugs (TaskMenu 20%) or manage account
and settings (OtherMenu 80%).

TaskMenu report or search a bug (ReportOrSearch 70%) or
work on an existing bug (EditBug 30%).

ReportOrSearch enter information (category, assigner, description)
and report a new bug (PerformBugReportingTask
80%), or search for a bug using its bug ID or via
filtering options (SearchOrFilter 20%).

SearchOrFilter search a bug by using the bug ID (Search 80%),
or by specifying filtering options (Filter 20%). On
the obtained bug editing operations are performed
and the bug report is then submitted (SubmitBu-
gReport).

EditBug select a bug using the bug ID, view the bug details,
perform editing operations and then submit the bug
report (SubmitBugReport).

SubmitBugReport change status (ChangeStatus 25%), or assign bug
(Assign 75%). In any case further operations on the
bug are performed. A relationship between bugs is
established (20%) or not (80%), a file is attached
(25%) or not (75%), a note is added (10%) or not
(90%). The bug report is at this point submitted
and the user, in case the timeout is not expired yet,
selects a new task (TaskSelection) .

OtherMenu the user can perform, with the same probability
(11%), one of the following operations: go to the
user view and edit a single bug (MyView), go to
the main page and select a new task (Main), view
all the issues (ViewIssues), go on the account page
(MyAccount), report a new issue (ReportIssue),
go to the road map page (RoadMap), go to the
logging page (ChangeLog), go to the summary
page (Summary), or go to the management page
(Manage).

Table III
USER ACTION PATHS AND PROBABILITIES.

5 users 25 users

Log Source min. max. min. max.

Web Sever 926 1029 3063 4308

Database 72150 78589 240889 305068

Reverse proxy 916 1018 3022 4217

Total log lines 74072 80521 247231 313593

avg.lines/minute 4938 5368 16482 20906

Table IV
LOG DATA PRODUCTION PERFORMANCE DURING A 15 MINUTES RUN.

For that purpose, we compared (i) the data set from a real

productive environment with (ii) our produced set. Figure 5

visualizes the relative request rate for the real setup and

the virtual setup for the most common types of request.

As one can see, even the quite simple virtual user behavior

model which only implements 88 of 291 request types can

already simulate a realistic load on the platform. Notice

that a 100% accurate virtual user behavior is not required

since the purpose of the produced requests is just to create

a realstic load and background noise on the system when

an actual attack is carried out to evaluate security systems

(e.g., IDSs). Hence, it is just important that the virtual setup

does not ease the detection of anomalies and attacks.

Two outliers are significant, which we left in our model

on purpose. The resource view_all_bug_page.php

is the starting point for all simulated user actions and

is requested therefore much more often, while in reality

people may use direct links to an issue (directly request

view.php). Moreover, the simulated user does not use

cookies to keep logged-in. These outliers are not a weakness

of our approach or implemented system, but just show the

importance of an accurate user model to get realistic data

and the consequences if certain aspects are not considered

appropriately.

D. Critical Review

After demonstrating the successful application we like to

highlight the following notable advantages of our approach:

• Not only log-data but also reaction of components, e.g.

IDS detection, blocking attack, etc. can be simulated.

• The browser/server interaction for user input simulation

triggers completely realistic effects, e.g. loading of style

sheets, javascript-processing, form-processing etc.

• The interactions of the server components and their

temporal order and complexity are completely realistic.

• The whole test-ecosystem allows evaluation of a wide

variety of real attacks on the interlinked server/client

system, e.g. spreading of drive-by downloads.

Nevertheless, there are a few inherent disadvantages that

applicants need to be aware of. In our future work, we are

going to address some these:

• The reproducibility of data sets is limited. Even if we

seed random generators of the user behavior model with

a predefined value, depending on the complexity of the

system the log output might be slightly different in each

run.

• The user interaction model based on real browser input

results in much more realistic load on the infrastructure

than simple command line based scripts, however there

might still be artifacts due to oversimplification in the

data sets.

• The usability in terms of speed, ease of use and

system scalability, is considerably worse compared to a

data generation application that is running on a single

machine.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described an approach to realistic (log)

data set generation of Web-based infrastructures. This is

essential in order to evaluate security systems in a realistic

manner. In contrast to many existing approaches, we do not

focus on large-scale networks with hundreds of machines

where we perform net flow analysis. We rather deal with

simulating systems and service, on a higher level, including

lifelike user input in order to challenge systems close to

reality. The results of this effort are reliable data sets for

system testers, and algorithm developers.

Future work deals with reducing the complexity of appli-

cation for users, the improvement of the existing software

bundle, especially in terms of modularity and extensibility

with third party software, and the incorporation of critical

feedback from the research community.

ACKNOWLEDGEMENTS

This work was partly funded by the Austrian FFG research

program KIRAS in course of the project CIIS (840842) and

the European Union FP7 project ECOSSIAN (607577).

REFERENCES

[1] A. Ozment, “Bug auctions: Vulnerability markets reconsid-
ered,” in Third Workshop on the Economics of Information
Security, 2004.

[2] C. Tankard, “Advanced persistent threats and how to monitor
and deter them.” Network Security, vol. 2011, no. 8, pp. 16–
19, 2011.

[3] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida,
“Malware phylogeny generation using permutations of code.”
J. in Comp. Virology, vol. 1, no. 1-2, pp. 13–23, 2005.

[4] W. G. Halfond, J. Viegas, and A. Orso, “A classification of
SQL-Injection attacks and countermeasures,” in IEEE Int’l
Symposium on Secure Software Engineering, 2006.

[5] M. Richmond, “Vise: The virtual security testbed,” University
of California, Santa Barbara, Tech. Rep., 2005.

[6] L. M. Rossey, R. K. Cunningham, D. J. Fried, J. C. Rabek,
R. P. Lippmann, J. W. Haines, and M. A. Zissman, “Lariat:
Lincoln adaptable real-time information assurance testbed,” in
In IEEE Proc. Aerospace Conference, 2001, pp. 2671–2682.

[7] X. Jiang, D. Xu, H. J. Wang, and E. H. Spafford, “Virtual
playgrounds for worm behavior investigation.” in RAID, vol.
3858. Springer, 2005, pp. 1–21.

[8] G. Singaraju, L. Teo, and Y. Zheng, “A testbed for quantitative
assessment of intrusion detection systems using fuzzy logic,”
in IEEE Int’l Inf. Assurance Workshop, 2004.

[9] T. Benzel, “The science of cyber security experimentation:
the deter project.” in ACSAC. ACM, 2011, pp. 137–148.

[10] T. Morris, R. Vaughn, and Y. S. Dandass, “A testbed for
scada control system cybersecurity research and pedagogy,”
in Workshop on Cyber Security and Information Intelligence
Research, 2011, pp. 27:1–27:1.

[11] F. Skopik and R. Fiedler, “Intrusion detection in distributed
systems using fingerprinting and massive event correlation,”
in 43. Jahrestagung der Gesellschaft fuer Informatik e.V.,
2013, pp. 2240 – 2254.

[12] D. R. Miller, S. Harris, A. Harper, S. VanDyke, and C. Blask,
Security Information and Event Management (SIEM) Imple-
mentation. McGraw-Hill, 2010.

[13] DARPA Intrusion Detection Data Sets, http://www.ll.mit.
edu/mission/communications/cyber/CSTcorpora/ideval/data/,
2000.

[14] J. Sommers and P. Barford, “Self-configuring network traffic
generation.” in Internet Measurement Conference. ACM,
2004, pp. 68–81.

