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ABSTRACT

Network security represents a keystone to ISPs, who need to
cope with an increasing number of network attacks that put
the network’s integrity at risk. The high-dimensionality of
network data provided by current network monitoring sys-
tems opens the door to the massive application of machine
learning approaches to improve the detection and classifi-
cation of network attacks. In this paper we devise a novel
attacks detection and classification technique based on semi-
supervised Machine Learning (ML) algorithms to automat-
ically detect and diagnose network attacks with minimal
training, and compare its performance to that achieved by
other well-known supervised learning detectors. The pro-
posed solution is evaluated using real network measurements
coming from the WIDE backbone network, using the well-
known MAWILab dataset for attacks labeling.
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1. INTRODUCTION
Network security and anomaly detection has become a vi-

tal component of any network in today’s Internet. Ranging
from non-malicious unexpected events such as flash-crowds
and failures, to network attacks and intrusions such as denials-
of-service, network scans, worms propagation, botnets ac-
tivity, etc., network traffic anomalies can have serious detri-
mental effects on the performance and integrity of the net-
work. The principal challenge in automatically detecting
and characterizing traffic anomalies is that these are mov-
ing targets. It is difficult to precisely and continuously define
the set of possible anomalies that may arise, especially in the
case of network attacks, because new attacks as well as new
variants to already known attacks are continuously emerg-
ing. A general anomaly detection system should therefore
be able to detect a wide range of anomalies with diverse
structures, without relying exclusively on previous knowl-
edge and information. In this paper we devise k-CDA, a
novel attacks detection and classification technique based on
semi-supervised Machine Learning (ML) algorithms to auto-
matically detect and diagnose network attacks with minimal
training data. We additionally investigate and compare its
performance to that achieved by other well-known super-
vised learning classifiers. In Sec. 2 we describe k-CDA and
briefly overview the tested supervised models, whereas data
description and results are presented in Sec. 3.

2. ML-BASED APPROACHES
In this section we describe the proposed detection and

classification approach based on clustering, and briefly in-
troduce five well-known, fully supervised based detection
approaches used for testing and comparison purposes.

2.1 Clustering-based Analysis
The clustering-based approach introduced in this work, re-

ferred to as k-CDA (k-means Clustering-based Detector of
Attacks) has the main advantage of being semi-supervised,
which means that the amount of learning data which is re-
quired for training/calibration purposes if significantly less
than that required by supervised approaches. Given a train-
ing set of m measurements consisting each of n features, our
method uses first the well known K-means clustering algo-
rithm [2] to partition the complete feature space X ∈ R

m×n

in a set of K clusters. The centroid of each of these K
clusters is then computed, and a label is assigned to each of
them, based on majority voting performed on a small sample
of ground truth labels among the measurements belonging
to each cluster. In particular, we decide the class y of a clus-
ter based on the real label of only 5% of the samples within
this cluster, randomly sampled. We have verified that this
small fraction is good enough to provide proper detection
and classification results. Once all clusters have been la-
beled, the standard approach to follow for clustering-based
classification is to assign, to every new sample, the class of
the cluster with the closest centroid [4]. However, given that
the real number of clusters K is not known in advance, fol-
lowing such an approach might be counterproductive and
lead to less robust results [4].

Indeed, one well-known limitation of using K-means as
clustering algorithm is that one needs to define in advance
the number of K clusters to identify, which in principle is
completely unknown, specially when no labeled data is used.
Selecting a small value forK results in bigger and potentially
less homogeneous clusters; having a big number of clusters
has the advantage of resulting in more homogeneous clusters,
but if this number is too big, the analysis and interpretation
of results becomes more cumbersome and the advantages
of grouping samples together is partially lost. To partially
solve this issue, we resort to a simple heuristic, based once
again on a majority voting approach. We set K to a value
equal to 0.1% of the training sample size, i.e., K = m/1000,
and then decide on the label of a new sample using a k-NN
(Nearest Neighbors) algorithm, computing the distance of
the new sample to all the K centroids, and using majority
voting on the labels of the k closest centroids. By doing so,
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(a) k-CDA model.
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(b) C4.5 model.
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(c) MLP model.
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(d) NB model.
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(e) RF model.
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(f) SVM model.

Figure 1: Detection performance per type of attack and ML-based approach.

we obtain more homogeneous clusters, and limit the impacts
of single centroid-based classification. The value of k clearly
depends on the value of K: based on empirical testing, we
set k = K/3 (naturally, all values are rounded to obtain
integer numbers for both k and K).

The final ingredient of our approach is on the particu-
lar way we compute distances: instead of using a simple
Euclidean distance, we compute the per-cluster normalized
Mahalanobis distance between every new sample and the
K labeled centroids. The Mahalanobis distance takes into
account the correlation between samples, dividing the stan-
dard Euclidean distance by the variance of the samples be-
longing to each cluster. In a nutshell, if a cluster has a
bigger variance on a certain direction (i.e., feature), then
the Mahalanobis distance will make samples closer to this
cluster than to other ones with smaller variance, making less
compact clusters closer to samples.

2.2 Supervised-based Analysis
We select five fully-supervised models using C4.5 Deci-

sion Trees (C4.5), Random Forest (RF), Support Vector
Machines (SVM), Näıve Bayes (NB) and Neural Networks
(MLP). We selected these detectors for comparison based on
the a-priori good performance shown by their application in
previous work on anomaly detection [3] and traffic classifi-
cation [5]. We use the well-known Weka Machine-Learning
software tool to calibrate these ML-based algorithms and to
perform the evaluations. We address the interested reader
to the survey [5] and to the Weka documentation for addi-
tional information on the algorithms and their configuration
parameters.

3. DATA DESCRIPTION AND RESULTS
We test the performance of the proposed approaches using

real network traffic measurements coming from the WIDE

backbone network, using the well-known MAWILab dataset
for attacks labeling [1]. MAWILab is a public collection of
15-minute network traffic traces captured every day on a
backbone link between Japan and the US since 2001. Build-
ing on this repository, the MAWILab project uses a com-
bination of four traditional anomaly detectors (PCA, KL,
Hough, and Gamma, see [1]) to partially label the collected
traffic. The traffic studied in this paper spans 2 months in
late 2015. From the labeled anomalies and attacks, we fo-
cus on a specific group which are detected simultaneously
by the four MAWILab detectors, using in particular those
events which are labeled as “anomalous” by MAWILab. As
such, we highly increase the quality of the obtained labels,
as we keep only those which have the highest concensus.
We consdier in particular 5 types of attacks/anomalies: (i)
DDoS attacks (DDoS), (2) HTTP flashcrowds (mptp-la), (3)
Flooding attacks (Ping flood), and two different flavours of
distributed network scans (netscan) using (4) UDP and (5)
TCP probing traffic. We train the different models to de-
tect each of these attack types separately, thus each detec-
tion approach consists of five different detectors which run
in parallel on top of the data, each of them specialized in
detecting one of the five aforementioned attacks types. As
a result, each detection approach can not only detect the
occurrence of an attack, but also classify its nature. Finally,
we evaluate detection performance per anomaly type, con-
sidering a slotted, time-based evaluation. For doing so, we
split the traffic traces in consecutive time slots of one second
each, and compute a set of features describing the traffic in
each of these slots. In addition, each slot i is assigned a label
li, consisting of a binary vector li ∈ R

5×1 which indicates at
each position if anomaly of type j = 1..5 is present or not in
current time slot.

For the sake of better detecting and diagnosing anomalies
and attacks, we compute a large number n of features de-



Field Feature Description

Tot. volume
# pkts num. packets

# bytes num. bytes

PKT size

pkt h H(PKT)

pkt {min,avg,max,std} min/max/std, PKT

pkt p{1,2,5,...95,97,99} percentiles

IP Proto

# ip protocols num. diff. IP protos.

ipp h H(IPP)

ipp {min,avg,max,std} min/max/std, IPP

ipp p{1,2,5,...95,97,99} percentiles

% icmp/tcp/udp share of IP protos.

IP TTL

pkt h H(TTL)

ttl {min,avg,max,std} min/max/std, TTL

ttl p{1,2,5,...95,97,99} percentiles

IPv4/IPv6

% IPv4/IPv6 share of IPv4/IPv6 pkts.

# IP src/dst num. unique IPs

top ip src/dst most used IPs

TCP/UDP ports

# port src/dst num. unique ports

top port src/dst most used ports

port h H(PORT)

port {min,avg,max,std} min/max/std, PORT

port p{1,2,5,...95,97,99} percentiles

TCP flags (∀)

flags h H(TCPF)

flags {min,avg,max,std} min/max/std, TCPF

flags p{1,2,5,...95,97,99} percentiles

TCP WDW size

wdw h H(WDW)

wdw {min,avg,max,std} min/max/std, TCPF

wdw p{1,2,5,...95,97,99} percentiles

Table 1: Input features for the ML-based detectors.

The full set consists of 245 different input features.

scribing a time slot, using traditional packet measurements
including traffic throughput, packet sizes, IP addresses and
ports, transport protocols, flags, etc. Tab. 1 describes the
set of n = 245 features, which are computed for every time
slot i = 1..m. Note that besides using traditional features
such as min/avg/max values of some of the input measure-
ments, we also consider the empirical distribution of some of
them, sampling the empirical distribution at many different
percentiles. This is not a common technique but provides as
input much better information, as the complete distribution
is taken into account. We also compute the empirical en-
tropy of these distributions, reflecting the dispersion of the
observed samples in the corresponding time slot.

3.1 Detection and Classification Performance
We test the detection/classification capabilities of k-CDA

and the other supervised approaches by computing the True
and False Positive Rates (TPR/FPR) for each of the attack
types. Fig. 1 depicts the Receiver Operating Characteristic
(ROC) curves obtained with each detector, for the proposed
attack classes. To reduce over-fitting, all presented results
correspond to 10-fold cross validation. Fig. 1(a) provides the
results obtained for the k-CDA approach, whereas Figs. 1(b-
f) show the comparative results obtained for the supervised
detectors. k-CDA can correctly detect around 50% of the
attacks without false alarms, and performs quite closely to
the C4.5 model, which is fully supervised. Still, for some
types of attacks, the achieved performance is poor, detect-
ing about 80% of the DDoS attacks with a FPR below 10%.
Both the MLP and the RF models achieve the best perfor-
mance, detecting around 80% of the anomalies without false
alarms. As a basic conclusion, we can claim that the k-
CDA detection performance is comparable to that achieved
by some of the fully supervised models, but using only 5%
of labeled samples for training purposes, which is a major
advantage in the practice.
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(a) k-CDA, n = 245. (b) k-CDA, n = 22.

Figure 2: Improving k-CDA detection performance

by feature selection.

3.2 Improving k-CDA by Feature Selection
While using a large set of input features can normally re-

sult in improved performance for some supervised approaches,
it is not always the best strategy to follow, as it may nega-
tively impact performance. Using more features increments
the dimensionality of the feature space, normally introduc-
ing undesirable effects such as sparsity and training over-
fitting. At the same time, using irrelevant or redundant fea-
tures may diminish performance in the practice, specially
for clustering approaches [6]. We show next that by care-
fully addressing the pre-filtering of input features by stan-
dard feature selection techniques, we can improve the de-
tection/classification performance of k-CDA. In particular,
we focus on improving the detection of DDoS attacks, which
proved to be the worst detected by k-CDA in Fig. 1(a).

There are different search strategies and evaluation cri-
teria to construct a sub-set of traffic features. We particu-
larly apply a widely used evaluation criterion to construct
a reduced sub-set of features: correlation-based evaluation.
This approach basically selects sub-sets of features that are
poorly correlated among each other, but highly correlated to
the anomaly classes. As search strategy, we use Best-First
(BF) search; BF is similar to a standard greedy exploration,
but it has the ability to do backtracking, i.e., it basically
keeps the previously evaluated sub-sets so as to avoid local
maximum/minimum results when there is no local improve-
ment. By running the proposed technique, we end up with
a greatly reduced set of features, going from the initial 245
features to only 22. Fig. 2 shows the ROC curves for k-
CDA in the detection of the DDoS attacks, using (a) the
full set of features, and (b) the pruned set. Results show a
clear improvement in the detection performance of DDoS at-
tacks, partially compensating the initial performance issues
observed in Fig. 1(a).
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