Information Systems 60 (2016) 13-33

Contents lists available at ScienceDirect =
Information
Systems
Information Systems
journal homepage: www.elsevier.com/locate/infosys e

-

Complex log file synthesis for rapid sandbox-benchmarking \!)cIossMaﬂ(
of security- and computer network analysis tools

Markus Wurzenberger “*, Florian Skopik®, Giuseppe Settanni?,

Wolfgang Scherrer "

2 Austrian Institute of Technology, Digital Safety and Security Department, Donau-City-Strasse 1, 1220 Vienna, Austria
b Vienna University of Technology, Institute of Statistics and Mathematical Methods in Economics, Wiedner Hauptstrasse 8, 1040 Vienna,

Austria

ARTICLE INFO

Article history:

Received 18 December 2015
Accepted 17 February 2016
Recommended by: D. Shasha
Available online 26 February 2016

Keywords:

Log line clustering

Markov chains

Log file analysis

Log data modeling

IDS deployment optimization

ABSTRACT

Today Information and Communications Technology (ICT) networks are a dominating
component of our daily life. Centralized logging allows keeping track of events occurring
in ICT networks. Therefore a central log store is essential for timely detection of problems
such as service quality degradations, performance issues or especially security-relevant
cyber attacks. There exist various software tools such as security information and event
management (SIEM) systems, log analysis tools and anomaly detection systems, which
exploit log data to achieve this. While there are many products on the market, based on
different approaches, the identification of the most efficient solution for a specific infra-
structure, and the optimal configuration is still an unsolved problem. Today's general test
environments do not sufficiently account for the specific properties of individual infra-
structure setups. Thus, tests in these environments are usually not representative. How-
ever, testing on the real running productive systems exposes the network infrastructure to
dangerous or unstable situations. The solution to this dilemma is the design and imple-
mentation of a highly realistic test environment, i.e. sandbox solution, that follows a
different - novel - approach. The idea is to generate realistic network event sequence
(NES) data that reflects the actual system behavior and which is then used to challenge
network analysis software tools with varying configurations safely and realistically offline.
In this paper we define a model, based on log line clustering and Markov chain simulation
to create this synthetic log data. The presented model requires only a small set of real
network data as an input to understand the complex real system behavior. Based on the
input's characteristics highly realistic customer specified NES data is generated. To prove
the applicability of the concept developed in this work, we conclude the paper with an
illustrative example of evaluation and test of an existing anomaly detection system by
using generated NES data.

© 2016 Elsevier Ltd. All rights reserved.

* Corresponding author.

E-mail addresses: markus.wurzenberger@ait.ac.at (M. Wurzenberger),

florian.skopik@ait.ac.at (F. Skopik),

giuseppe.settanni@ait.ac.at (G. Settanni),
wolfgang.scherrer@tuwien.ac.at (W. Scherrer).

http://dx.doi.org/10.1016/].is.2016.02.006
0306-4379/© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Centralized logging is becoming more and more the
key to efficient operations of large-scale interconnected
information infrastructures. A central log store is an
invaluable source to discover problems in time, such as

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.02.006
http://dx.doi.org/10.1016/j.is.2016.02.006
http://dx.doi.org/10.1016/j.is.2016.02.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.02.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.02.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.02.006&domain=pdf
mailto:markus.wurzenberger@ait.ac.at
mailto:florian.skopik@ait.ac.at
mailto:giuseppe.settanni@ait.ac.at
mailto:wolfgang.scherrer@tuwien.ac.at
http://dx.doi.org/10.1016/j.is.2016.02.006

14 M. Wurzenberger et al. / Information Systems 60 (2016) 13-33

service quality degradations, performance issues or
security-relevant cyber attacks - just to name a few. A
wide variety of analysis solutions exist that promise to
detect and flag system issues reflected in log files with
only little or no human involvement at all. Big data ana-
lysis is the new means to discover unprecedented infor-
mation in large volumes of data. Log file analysis is just
one application area.

However, despite the fact that much progress has been
made in the application of big data analysis for investi-
gating logging data, there seems to be one key element
missing that is required to facilitate the wide adoption of
these technique. There is no appropriate solution available
to pinpoint the specific requirements on an analysis solu-
tion given a certain infrastructure. The underlying problem
is that due to the high degree of interconnectedness of
distributed systems as well as their application- and
domain-specific customization and configuration, there
are hardly two networked systems that work exactly the
same way. Therefore, we argue that each and every system
is unique, either as a result of its configuration, its appli-
cation domain and/or the way it is utilized.

As a consequence, it is hard for system operators to
decide which solution (and configuration) is the best fit-
ting one for their specific infrastructure and their specific
purposes. Today, there are only unsatisfying options for
said system operators to decide on a logging- and log
analysis solution. They can either infer some conclusions
(i) from quite general evaluations in testbeds, or (ii) test
with somewhat simplified data only which mostly do not
reflect the real-world properties sufficiently; or (iii) run
tests on their productive systems - which enables the
most realistic evaluation of a logging system and its con-
figuration, however at the same time might expose the
infrastructure to dangerous or unstable situations. The
latter is especially true in case automatic decisions are
derived based on the output of a log analysis solution, such
as the reaction of an intrusion prevention system due to
discovered security violations, or network performance
optimizations due to identified resource allocation
problems.

Eventually, a novel approach is required which allows
an offline evaluation of newly deployed logging- and log
analysis solutions and at the same time stresses this sys-
tem with the most realistic input data possible. Addition-
ally, all this must be done in a cost-effective manner to
guarantee high adoption by system integrators and
operators. Thus, in this paper we propose a three step
solution: first, small samples of real log data are extracted
from an already running system. The sample must be long
enough to describe normal system behavior with the usual
complexity, however it can be short enough to be manu-
ally screened for privacy-relevant data, such as usernames
and internal urls. In a second step, this data is being ana-
lyzed by the means of log line clustering (to identify
similar events) and correlation (to identify common
sequences of events). The results of this analysis phase are
captured as Markov chains. In the third and last step, the
captured model is input a large-volume log data genera-
tion process with configurable complexity and variability —
eventually the important input to test and evaluate logging

and log analysis solutions offline without influencing the
productive system where the initial data is coming from.

The contributions of this paper - basically the delivery
of the most important building blocks of the described
system - are the following:

® [og Data Analysis Approach: We introduce and describe
in detail a novel approach to analyze real log data and
capture its unique characteristics. In particular, our
approach makes use of log line clustering to discover
and describe common events reflected by log lines, and
Markov chains to model the correlation and inter-
dependencies of those.

® [og Data Generation: Once we got an understanding
about the structure and properties of short sequences of
log data from a real system, we apply a new approach to
generate large volumes of synthetic log data that follow
precisely the properties of the analyzed log data before.
The advantage here, compared to a simple record &
replay-system is that the complexity of the output data
can be controlled during the generation and therefore,
data to evaluate different kinds of systems can be
produced. Additionally, this approach enables us to
introduce variations into the produced set (such as time
stamps, IP addresses, and system names) - similar to
the real world.

® Evaluation of the Log Data Analysis and Generation
Approach: We show detailed evaluation results to
underpin the high quality of the log data generated with
our approach. For this purpose we also define novel
metrics.

® [llustrative Application of the Log Data Analysis and Gen-
eration Approach: Finally we highlight the application of
the proposed approach in the security domain with
focus on anomaly detection/Intrusion Detection Sys-
tems (IDS). Here, we first demonstrate the capability of
our approach to evaluate such security solutions. Hence,
we present an illustratively and exemplarily evaluation
of an anomaly detection system which can be part of a
security information and event management (SIEM)
system and also be used as an IDS. Furthermore we also
indicate, how attacks can be simulated and therefore
the detection capability can be tested. Moreover we
define a step-by-step enrollment process for IDSs based
on actual standards from the International Organization
for Standardization (ISO) and the National Institute of
Standards and Technology (NIST). Based on this deploy-
ment process we then argue which steps can be
simplified and optimized by applying our approach
and highlight its benefits.

The remainder of the paper is structured as follows:
Section 2 defines the proposed model for generating syn-
thetic log data. Afterwards Section 3 evaluates and dis-
cusses the previously defined model. In Section 4 an
illustrative example of application for the generated log
data is presented. Further Section 5 defines a step-by-step
enrollment process for IDSs and demonstrates the appli-
cation areas of the proposed approach. Section 6 sum-
marizes related work before Section 7 concludes the paper
and provides an outlook on future work.

M. Wurzenberger et al. / Information Systems 60 (2016) 13-33 15

Real Log Data

Model
Refinement

NES Data

Analysis

Refinement

Fig. 1. The concept of the proposed approach for building a log data model.

2. Theoretical model

The following section describes the theoretical model
that underpins our novel approach for generating highly
realistic synthetic log data, which is called network event
sequence (NES) data in the following. Fig. 1 illustrates the
concept of the proposed approach for building a log data
model. Since the characteristics of a log file depend on the
properties of the monitored system, a part of real log data
is required. Analysis of this input log data allows us to
identify characterizing properties. Based on the input data
a model is built, which then can be used for generating
realistic NES data. Furthermore, iterative and interactive
refinement of the analysis and the model allows us to
modify the complexity of NES data. This means that test
data for quick to in-depth analysis and evaluation of dif-
ferent software applications, especially anomaly detection
systems (ADS), can be generated.

For putting the proposed concept into practice, our
model combines log line clustering, Markov chain simu-
lation and other methods of probability theory and sta-
tistic. Considering Fig. 1 the analysis part is covered by log
line clustering and the model part by Markov chain
simulation. Therefore, existing methods are extended,
refined and further developed. The proposed approach is
based on the following four main functions:

(i) log line clustering,

(ii) assigning log lines to clusters,
(iii) arranging clusters,
(iv) populating log lines.

During step (i) clusters are built by generating log line
descriptions. Based on these descriptions regular expres-
sions are created. Afterwards in (ii) these regular expres-
sions are used for assigning the log lines to the clusters. In
(iii) a Markov chain approach is applied for arranging the
log line clusters in the NES data file. Finally in (iv) the log
lines are populated with content. Therefore, on the one
hand time stamps are generated and on the other hand we
present three different approaches for generating log line
content for various applications. In the following subsec-
tions the proposed model is described in more details. The
symbols we use in this section are summarized in Table 1.

2.1. Log line clustering

First we characterize the operating principle of the
clustering algorithm we use to divide the log lines of a
considered log file into clusters. To perform log line clus-
tering we apply an algorithm which was invented by Risto
Vaarandi and first published in [1]. The algorithm has been
especially developed for detecting word clusters in log files
[2]. Furthermore, there already exists a C implementation
- Simple Logfile Clustering Tool (SLCT) [3] - of the algo-
rithm, which is open source and easy to adapt to our
needs. The remaining section is partly based on [1,4].

According to Vaarandi, every data point A in the data
space D corresponds to one log line in a log file. The
dimension np e N of the data space D is defined as the
maximum number of words per line in the log file.
Therefore, we define words of a log line the substrings of
the line, separated by white spaces. Every data point A has
categorical attributes iy, ...,iy,. Categorical attributes are
equal to the words of the log line corresponding to the
data point A. The values v, ...,vp, 0 i1,...,i5, are strings.
The j-th word of a log line is the value of the j-th attribute,
where ij=v;. To simplify the attribute labels i, ...,i,, are
equal to the position of the word they correspond to, i.e.
iy =1,i =2, ...,ip, = np. As a result one data point AeD is
a vector of strings of the form as shown in the following
equation:

A= (X1 =V1,...,Xn, = Vnp). @)

We define the line length (I € N) of a log line as the number
of words in the line. Due to the fact that not all log lines
have the same line length, all entries i, with [<k <np are
set to null, i.e. they are empty.

Furthermore, let] = {1, 2, ..., np} be a subset of indices, a
region R is defined as a subset of D (R = D), where all data
points A € R have the same values v; for all j €],

R={AeDixj=vj, VjeJ}. @

This implies that Reyedarributes = {(ij, Vj)lj € J} is defined as the
set of fixed attributes of the region R. If the cardinality of
RﬁxedAttributes is 1, RﬁxedAttributes{ =1 (le R has jUSt one fixed
attribute), R is called 1-region. Furthermore, a dense region
is defined as a region, which contains at least N data
points, i.e. [R| > N, whereby N e N is the support threshold
value, which is specified by the user.

16 M. Wurzenberger et al. / Information Systems 60 (2016) 13-33

Table 1
Symbols for the theoretical model.

Description Symbol
Dataspace D
Dataspace dimension np
Region R
Datapoint A
Attributes i1, ..., 0np
Values Vi, ...,V
Log line length l
Support threshold value N

Jj-th cluster @
Cluster value of the i-th cluster cv;
Number of clusters ne

Cluster size (number of lines per cluster) r
Wild card symbol *®
Markov chain state space S
Markov chain state s
Transition matrix (in total) T

P

Transition matrix (probabilities)

Initial distribution u®
Size of the real log file M
Size of the NES data file L
Time stamps ts
Time differences td
Vector of time differences D

The clustering algorithm can be structured into three
steps:

1. summarize,
2. build cluster candidates,
3. select clusters from the list of candidates.

During the first step the algorithm examines the whole
log file line by line and identifies all dense 1-regions. This
step corresponds to mining frequent words from the log
file. Note that the algorithm also takes into account the
position of a word in the line. For example the 1-regions
with the sets of fixed attributes {(1, ‘example’)} and
{(3, ‘example’)} do not necessarily contain the same data
points (log lines) and the word ‘example’ may have dif-
ferent meanings at different positions. Since frequent
words correspond to dense 1-regions, a word has to occur
at least N times at the same position to be considered
frequent, whereby N is the support threshold value spe-
cified by the user.

After the data summarization step, the algorithm scans
the log file a second time, to build cluster candidates.
During this step all cluster candidates are stored in a table
and a support value, which specifies how often a candidate
has been generated, is associated. The algorithm processes
the log file line by line and if a log line can be assigned to
one or more dense 1-regions, i.e. one or more frequent
words have been found in the line, the algorithm gen-
erates a cluster candidate. If the candidate is not yet stored
in the table, it is added with the support value 1. Other-
wise the candidate's support value is increased by 1. A
cluster candidate is generated as follows: again,
J<=1{1,2,...,np} is a subset of indices with cardinality |J| =d
and de{1,2,...,np}. If the processed log line can be
assigned to d dense 1-regions with the d fixed attributes
(ij, vj), (ij, vj), with j €], the generated cluster candidate is a

region R with the set of fixed attributes
Rpixedattributes = {(ij, vj)lj € J}. For example, if the processed log
line is Connection from 192.168.1.1 and during the
summarization step the algorithm found one dense 1-
region with the fixed attribute (1, ‘Connection’) and
another one with the fixed attribute (2, ‘from’), the gen-
erated cluster candidate is the region R, with the set of
fixed attributes
Riixedastributes = {(1, ‘Connection’), (2, ‘from’)}. Note that at
most one cluster candidate per line can be generated.
Therefore, the support value does not specify the number
of lines, matching a cluster, it more or less specifies from
how many lines a cluster candidate would be generated.
The following example shows which kind of cluster can-
didates are not generated:

Example 2.1. If ‘one’, ‘two’ and ‘three’ are frequent words
in a log file and they only occur in the combinations ‘one
two’ and ‘one three’, then only these two combinations are
considered as cluster candidates, ‘one’, ‘two’ and ‘three’ are
not a cluster candidate.

During the last step the algorithm selects the clusters C;
from the table of candidates. Therefore, it goes through the
table of cluster candidates and all dense regions are
selected as clusters. Remember, dense regions are regions
with a support value equal or greater than the support
threshold value N. In other words, if at least N log lines are
assigned to a region, it is considered as a cluster. Because
of the definition of a region each cluster matches a specific
line pattern. Hence, the cluster with the set of fixed attri-
butes

{(1, ‘Connection’), (2, ‘from’), (4, ‘to’)}

corresponds to the line pattern Connection from 3 to, if
the dimension of the data space D is np=4. There the
symbol represents a wild card, i.e. it serves as a placeholder
for words which are not part of the set of fixed attributes
of the cluster described by the line pattern.

As the described procedure shows, the proposed algo-
rithm searches for dense regions R in subspaces of the data
space D. The output of the clustering algorithm are clusters
and their descriptions. Note that at this stage no log lines
are assigned to the clusters. We address this part of the
model in Section 2.2.

To perform the proposed log line clustering, we adap-
ted SLCT [3], an already existing C implementation of the
introduced clustering algorithm. Therefore, first the wild
card symbol has to be specified for every considered log
file; it may be the case that the default used symbol : also
represents a single word of length 1. For example the log
line
database mysgl —normal #011#01173640

Query#011SELECT =

could suggest the cluster with the cluster description
database mysqgl —normal * Query#011SELECT x.

In this case it is not clear that the second = represents a
word instead of a wild card. Therefore, a unique character
or sequence of characters, which is not occurring in the

M. Wurzenberger et al. / Information Systems 60 (2016) 13-33 17

whole log file has to be specified for representing the
wild cards.

The main input parameter of SLCT is the user-specified
support threshold value N e N, which can be given as an
absolute number or in percentage (i.e. a proportion of the
number of log lines in the considered log file).

Given that just the log line content is to be clustered,
the time stamps should not influence the clustering. It is
possible to assume that a user-specified number of bytes in
the beginning of each log line are to be ignored during
clustering.

The output of the clustering algorithm consists of a list
of cluster descriptions and it is possible with SLCT to store
all lines which are not matching to any cluster in a text file.
SLCT was originally invented for detecting outliers in log
files [1,4,5]. It is reasonable to parse with SLCT again
through the outlier file with the same support threshold
value N and by doing this new cluster candidates can be
generated and occasionally also new clusters, which can be
added to the list of clusters. Remembering Example 2.1
also ‘one’ may then become a cluster. This procedure is
repeated until the length of the outlier file is smaller than
the support threshold value or no new clusters can be
generated. Algorithm 1 illustrates the procedure. The
function runst.cT (file, value) runs SLCT on a specified file
with a given support threshold value, storeoutliers
(file, clusterDescr.) stores all log lines of a log file which
are not matching any of the cluster descriptions generated
by SLCT in a text file and the function lengthIncreased
(list) checks if the list of cluster description increased in
the last iteration.

Algorithm 1. Creation of the cluster descriptions.

Data: logFile, supportThresholdValue
Result: clusterDescriptions
1 clusterDescriptions <
runSLCT(logFile, supportThresholdValue)
2 outlier
storeOutliers(logFile, clusterDescriptions)
3 while length(Outlier) > supportThresholdValue A
lengthincreased(clusterDescriptions) do
4 | clusterDescriptions <
runSLCT(outlier, supportThresholdValue)
5| outlier —
storeOutliers(outlier, clusterDescriptions)

6 end

In order to use SLCT in our model we configured the
algorithm so that it also allows overlapping clusters. This
means that after creating the table of cluster candidates,
the algorithm scans the log file once more and recalculates
the support value. The support value of each candidate
matched by a processed log line is therefore raised by one,
so that more cluster candidates are considered as clusters,
which results in a more detailed clustering.

2.2. Assigning log lines to clusters
After generating clusters the log lines have to be

assigned to the clusters. We first create regular expressions
based on the cluster descriptions. By means of the regular

expression the model can decide if a log line matches a
cluster or not.

Only using regular expressions for assigning log lines to
clusters would raise the issue that one log line could
match more than one cluster, i.e. the clustering would be
fuzzy. The following example points out this issue. We
consider the log line

Connection from 192.168.1.1 port 123

and the two clusters:

1. Connect from 192.168.1.1 port 3%,
2. Connect from % port % .

In this case the considered log line matches to the regular
expression of both cluster descriptions. However, in our
model we allow that a log line belongs only to one cluster.
The reasons for this are discussed later in Section 2.3.

To achieve that every log line belongs only to one
cluster, the definition of a metric is needed for deciding to
which cluster a log line should be assigned, if the line
matches to more than one cluster. A log line should be
assigned to the most accurate cluster. If the output of our
clustering algorithm could be arranged in a graph theore-
tical tree |6] with the same properties of a dendrogram [7],
obtained with hierarchical clustering, this could be
achieved easily. A dendrogram corresponds to a graph
theoretical in-tree, in which each node has a pointer to its
parent node. This means that only one path connects every
leaf node with the root node, i.e. there are no circles. The
most accurate cluster for a log line would be the leaf node
(matching the considered log line) with the largest dis-
tance to the root node. If more than one cluster fulfills this
conditions, the leaf node with the second largest distance
to the root node has to be considered, and so on, until only
one cluster fulfills the conditions. Since the output of our
clustering algorithm cannot be arranged in this way, we
adapt the discussed concept as follows.

We calculate the vector of cluster values cv (cf. Eq. (3))
for every cluster G, with ie {1, ...,nc}, where nc e N is the
number of generated clusters. The cluster value cv; is
defined as the number of fixed attributes a cluster consists
of

cV=(cV1,...,CVn). 3

For example the cv of the cluster Connect from % port % is
3, because it consists of the fixed attributes

{(1, ‘Connection’), (2, ‘from’), (4, ‘t0’)}.

All clusters matching to a log line, are stored in a list, by
using the regular expressions which are generated from
the cluster descriptions. The log lines are then assigned to
the cluster with the highest cluster value cv; in the list. If
there is more than one cluster with the highest cluster
value, the cluster with the second highest cluster value is
considered. This solution corresponds to the concept dis-
cussed before, where every log line is assigned to its most
accurate cluster. The hierarchy in our model is based on
the cluster values cv.

Every line which does not match any cluster is con-
sidered as an outlier. It is also possible to configure SLCT in

18 M. Wurzenberger et al. / Information Systems 60 (2016) 13-33

a way that log lines can belong to more than one cluster,
i.e. overlapping clusters are allowed. Choosing this option
results in a larger number of clusters, because while
deciding which cluster candidates become clusters, the
support value for every cluster candidate matched by a log
line is increased. Thus, the sum of all support values differs
to the log file's length. Furthermore, the proposed metric
we use to assign the log lines to the clusters enables
creating distinct clusters. If a log line matches more than
one cluster, the clusters have a common root and usually
one of the clusters characterizes this root node. The other
clusters then can be sorted in a hierarchy as children, i.e.
leaf nodes of the root node. It is also possible that one leaf
node has more than one parent node. This raises also no
difficulty since we use the proposed metric. Considering
the cluster descriptions a = %, with cluster value ‘cv;{ =1, a
% C ‘cvy=2,ab¥ ‘cv3=2"and a b c, ‘cv4=3’, the first
one would be the root node with children a #% c and a b *.
Since the cluster value cv,4 of a b c is larger than the others,
a b c characterizes a more specific cluster and is con-
sidered as son of a s c and a b . Since this hierarchy
exists, it is also no problem in the proposed model if a
cluster includes a lower number of lines than the support
threshold value. All lines, which are assigned to more
specific clusters also match to their parent clusters. Hence,
it might happen that in the end there are also clusters,
where no line is assigned to.

Algorithm 2 illustrates the procedure we use for
assigning log lines to their most accurate cluster.

Algorithm 2. Assigning log lines to their most accurate
cluster.

Data: logFile, clusterDescriptions

Result: clusters

1 for 1 <i< length(clusterDescriptions) do

clusterValue; <

calculateClusterValue(clusterDescription;)

3 end

4 for 1 <i< length(logFile) do

5 |for 1 <j < length(clusterDescriptions) do
6 ||if matches(logFile;, clusterDescriptions;)
then

matchingClusters « clusters;

7
8 ||end
9 |end

10 | mostAccurateCluster
findMostAccurateCluster(matchingClusters)
11 | mostAccurateCluster < logFile;

12 end

Algorithm 3 characterizes, how the most accurate
cluster is chosen. The function getClusterByValue
(cluster, cv) returns the cluster, corresponding to the pre-
viously chosen cluster value.

Algorithm 3. Determining the most accurate cluster
matching to a log line.

Data: matchingClusters,
clusterValuesOfMatchingClusters

Result: mostAccurateCluster

1 sortedValues —
sort(clusterValuesOfMatchingClusters)

Data: matchingClusters,

2 index < length(sortedValues)

3 while occurrence(sortedValues;,gex) # 1 do

4| index —index—1

5| if index <0 then

6 | | considered line is an outlier

7 || return

8|end

9 end

10 mostAccurateCluster
getClusterByValue(matchingClusters,
sortedValuesingex)

2.3. Arranging clusters in the NES data file

The next step in the proposed model is to arrange the
clusters in the generated NES data file. We apply a Markov
chain approach [8,9], which is based on the generation of a
series of random events. In the remaining section, we
describe how to arrange the clusters in the generated NES
data file by simulating a homogeneous Markov chain
{X¢; t e N}, with state space S, transition matrix P and initial
distribution x©.

First, we calculate the transition matrix P. In Section 2.2
we already mentioned that we need distinct clusters. We
achieve this by choosing the most accurate cluster. Hence,
it is possible to calculate the probability at which one
cluster follows another one. The number of transitions t;
from cluster C; to cluster C; with i,j e {1, ...,nc+1} is stored
in a Matrix T e N+ Dx(c+1.

ti1 SR AT |

11 Cncsinc+1

The last index here is nc+1 (instead of n¢, the number of
clusters), because the outliers are considered as an extra
cluster.
The transition probabilities p;; from cluster C; to cluster
G are calculated, as shown in the following equation:
i
DPjj ZC;l] rik,

foralli,je{1,...,nc+1}. 5)

The transition probabilities are then stored in a transition
Matrix P e Rc+Dx(c+D (cf, Eq. (6)), also called stochastic
matrix [10].

P11 Dinc+1
j P : (6)

Pnc+11 Dnc+1nc +1

Since P is a stochastic matrix each row of P represents a
probability distribution. This implies that the elements p;;
of the transition matrix P have to satisfy conditions in the
following equations:

O0<pj<1 forallije(l,...,nc+1}, @
nc+1
> pj=1 forallie(l,...,nc+1}. (8)
j=1

In the next step we estimate the initial distribution
u©® e R"+1 The elements of the initial distribution (@ are
the ratios between the row sums and the total sum of

M. Wurzenberger et al. / Information Systems 60 (2016) 13-33 19

elements of T as pointed out in the following equation:

ne+1 o

0) _ 1=1 i

Hi = nc+1 n5+1t
k=1 2u1=1 ‘K

forallie{1,...,nc+1}. 9)

Since 4@ represents a probability distribution it has to
satisfy the conditions in the following equations:

0<u®<1 forallie(l,..,nc+1), (10)
ne+1
ZMEO):l forallie{1,...,nc+1}. (11)

i=1

Finally the clusters in the generated NES data file can be
arranged by simulating the Markov chain {X;;t e N}, with
the state space S={Cj,...,Cp 41}, transition matrix P and
initial distribution x(©@. For simulating the Markov chain
and to arrange the clusters in the generated NES data file,
we apply an approach proposed in [11, Chapter 3]. To
perform the simulation of the Markov chain we primarily
need:

® a sequence {U;;teN} of independent and identical
distributed random numbers, uniformly distributed in
the unit interval [0, 1],

® an initiation function y and

® an update function ¢.

The initiation function is a function y:[0, 11— S, which we
use to generate the starting value Xo. We assume that y is
piecewise constant on the interval [0, 1] and for each se S
the total length of the intervals, on which w(x) =s, is equal
to x©(s). This corresponds to Eq. (12). Note that 1(x)
defines the so-called indicator function:

1
/ 15w)dx = u9(s) forall ses, (12)
0
1, if x=s,
Te®=10 else. a3

Given such an initiation function y, we can use the first
random number Uy to generate the starting value Xg by
setting Xo = w(Up). Thus we get the correct distribution of
Xo, because for any s e S Eq. (14) is valid:

1
P(Xo =$) = Py(Up) = 5) = /0 o) &X 240, (14)

Based on the previously mentioned properties, w
(defined in Eq. (15)) represents a valid initiation function,
being piecewise constant on the interval [0, 1] and satis-
fying the following equation:

G for x € [0,0(Cy)),
G for x e [uO(Cy), uO(C1)+u(C2)),

v =1 ¢ for x e [z}; LG, M<0>(C,-)),

Cooin forxe [z;?; “1uO(Cy), 1] .
(15)

The update function ¢:S x [0,1]—S is a function, we
use to generate the value X, from X; and U, for any
te N>0 We assume that the function ¢(s;,x) is for fixed
s; € S piecewise constant (when ¢ is considered as function
of x). Furthermore, for each fixed s;,s; € S, the total length
of the intervals, on which ¢(s;, x) =s;, is equal to the tran-
sition probability p;. This corresponds to the following
equation:

1
/ Vs (@(si, X)) dx =p;; forall s;,s5€S. (16)
0

If ¢ satisfies Eq. (16) then Eq. (17) is valid:
PX¢y 1 =5jlXe =51) = P((si, Ur 1) = 5j1Xt = 51)

1
= P(p(si, Ur 1 =) = /0 11552 X py. (17)

P(g(si, Ur 1) = 8j1Xe = 57) = P(¢p(si, Ur 1 =) is valid in Eq.
(17), because U, 1 is independent of (U, ..., U;), and thus
also of X,. Due to the same reason the probability remains
the same if we condition with the values (Xo,...,X;_1).
Hence the described procedure provides a correct simu-
lation of the Markov chain.

Based on the previously mentioned properties, ¢
(defined for each C;eS in Eq. (18)) represents a valid
update function, being piecewise constant on the interval
[0,1] and satisfying the following equation:

C; for x e [0,p;),
C, for x € [pi1, pin +Pi2))>

#Cix)=2 G for x e [Z’,:]] Dir> Z{: 1 pil) , (18)

. ne+1
Cpor1 forxe {Zp”,l].

=1

We described a procedure which allows simulation of
the homogeneous Markov chain {X;;te N}, with state
space S={Ci,...,Cy, 11}, initial distribution 4@ and tran-
sition matrix P. Using a sequence {U;;te N} of indepen-
dent and identical distributed random numbers, uniformly
distributed on the unit interval [0, 1], we obtain Eq. (19).
The number of values to be generated can be specified by
the user:

Xo=w(Up),
Xi=¢pXi_1,Up ieN\{0}. (19)

In case the input log file models a irreducible Markov
chain, the generated Markov chain has also to be irre-
ducible. This means that starting from any state s; € S, each
state s; € S has to be reachable in any number of steps. If
this is not possible our model does not reach every cluster
G, or it deadlocks in a small set of clusters. It can be
decided if the Markov chain is irreducible by checking Eq.
(20), where B e R+ Dx(ic+1) and [is the (nc+ 1)-dimen-
sional unit matrix. The Markov chain then is irreducible if
all entries of B are unequal to zero:

B=I+P+P*+--+P"*". (20)

Note that at this stage we have only ordered the clus-
ters previously generated. Each value X; of the simulated

20 M. Wurzenberger et al. / Information Systems 60 (2016) 13-33

Markov chain represents a placeholder for a log line, which
matches the cluster that the value X; corresponds to. After
determining the correct order of log line clusters in the
output file time stamps and log line content have to be
generated.

2.4. Populating log lines

A log line consists of two main building blocks: a time
stamp and content. While the time stamp defines when
the log line was created, the content specifies which event
is described by the log line. There exist different formats
for time stamps. In the following we use the format mvm
dd hh:mm:ss, Where MMM defines the month, dd the day
and hh:mm:ss the time, when the log line was created.
The following section deals with generating time stamps
and log line content for the generated log file.

2.4.1. Generating time stamps

For generating time stamps, we have to make some
assumptions. In the proposed model we assume that the
time stamps are independent from the log line content,
since the occurrence of the logged event is independent
from the time. But the time stamps are depending on the
cluster the log line belongs to. In other words, the interval
between two consecutive log lines depends on the clusters
the log lines belong to. Therefore we assume that the time
it takes until the next log line occurs depends on the
cluster the last log line belongs to.

We define the size of the considered log file M € N, the
number of lines it contains. Hence, there are M time stamps
ts;, with je{0,...,M—1}, in the log file and M—1 transi-
tions between log lines. This also means that there can be
M —1 time differences td;, with je {1,...,M—1}, calculated,

tdetSj—tSj,h je{l,...,M—l}. (21)

For every cluster C; a sequence of time differences TD;,
withie {1,...,nc+1} specifying the cluster, is stored. If the
log line j belongs to cluster C;, the time difference td; is
added to TD; e N', where r e N is the size of the cluster C;,
i.e. the number of lines assigned to cluster C;.

We then build an empirical distribution function (EDF)
[12] based on the elements of TD;. An EDF is defined as
follows:

Definition 2.2. Let X;,...,X, be elements of a sample. A
function F:R—[0,1] as defined in Eq. (22) is named a
empirical distribution function.

1 n
FO=_ > 1 sean(Xi) (22)
i=1

The EDF describes the distribution of elements of TD;.
Therefore we use the quantile function (inverse cumula-
tive distribution function) Q [12] of the EDF F (defined in
Definition 2.3) to generate random time differences with
the same distribution as in the input file.

Table 2
Symbols for the evaluation.

Description Symbol
Log file length n
Length of the i-th log line I;
i-th cluster @
Cluster value of the i-th cluster cv;
Support threshold value N
Mean coverage rate MCR
Number of outliers NoO
Number of clusters NoC
Difference of the relative cluster frequencies DRCF
Network event sequence NES
Original log file LFoyig
Generated NES data file LFngs

Definition 2.3. Let F be an EDF, then Q in Eq. (23) defines
the quantile function of F:

Q(p)=F Y(p)=infixe Rp<F(x)}, O<p<l1. (23)

We now use a random number U and the quantile
function Q, for generating the time stamps. The function
tdyanq(U, TD;): [0, 1] x N"—N, defined in Eq. (24), where F is
the EDF based on the elements of TD;, generates a random
time difference, based on the distribution of the values of
TD;:

td,qna(U, TD;):==inf{x € N|U < F(x)}. (24)

The time stamp for every generated log line is calculated as
shown in Eq. (25), where TD; is the vector of time differ-
ences of the cluster G, the generated log line belongs to
and L e N defines the size of the generated NES data file.
Note that the first time stamp ts; has to be specified by the
user:

ts; = [Sj,] +tdgna(U, TDy), j=2,...,L (25)

2.4.2. Generating log line content

The remainder of this section describes our approach
for generating log line content. We provide three options
which allow us to generate log line content of different
complexity. This is relevant for example for applications,
where the log line length matters. Our approach for gen-
erating log line content is based on the cluster descrip-
tions. The three options mainly differ in the way the wild
card symbol : in the cluster descriptions is replaced. In the
following the cluster with the description

Connect from * port x*

serves as example.

The first option is the most straightforward and simple
one. The log line content simply consists of the cluster
description, without wild card symbols. For example if a
line, which belongs to the example cluster, is generated it
looks as follows:

MMM dd hh : mm : ss Connect from port

where MMM dd hh:mm: ss represents the time stamp. This
is a good option to generate a NES data file which only

M. Wurzenberger et al. / Information Systems 60 (2016) 13-33

Table 3

Overview of the three common types of test data: synthetic, real and semi-synthetic, including their advantages and disadvantages [13].

21

Data origin Advantage Disadvantage
Synthetic Easy to (re-)produce, has desired properties, no No realistic ‘noise’ mostly simplified situations
unknown properties
Real Realistic test basis Bad scalability (user input, varying scenarios), privacy issues, attack on

Semi-synthetic More realistic than synthetic data, easier to produce
than real data

own system needed
Simplified and biased if an insufficient synthetic user model applied

reproduces the line sequence of the considered input
log file.

MMM dd hh : mm :

Next we introduce an opportunity which allows us to
generate log line content of higher complexity. The wild
card symbols in the cluster descriptions are replaced with
words which also occur in the input log file at the same
position. This can be achieved by using a similar approach
as the one proposed for generating the time distances
tdyang, previously in this section. For every wild card
symbol # all occurring words at its position are stored in a
list. Note that words even are stored if they already
occurred so that also their relative frequency is correct.
Afterwards, while generating the log line content, every
wild card symbol is replaced by one word out of the
related list. This works exactly the same way as the gen-
eration of time differences td, which is shown in Eq. (24).
For example we consider the example cluster and the log
lines

1. Connect from 192.168.1.1 port 123
2. Connect from 192.168.1.7 port 456.

Both log lines match to the example cluster. Here the first
wild card can be replaced by 192.168.1.1 or
192.168.1.7 and the second one by 123 or 456. Thus,
there are four different options of log lines which can be
generated if a log line belonging to the example cluster is
produced. This procedure has the advantage that the dis-
tribution of the log line length in the generated NES data
file resembles the one of the input log files. Furthermore IP
addresses are only replaced by IP addresses, and since the
generated NES data file can be arbitrarily long, some ran-
domness is kept.

The third proposed option can be used for more specific
purposes. The wild card symbols are replaced by sequen-
ces of a character which is not part of any cluster
description. To choose the length of the sequences we use
again the same approach as for generating the time dif-
ference td. For every wild card the length of the words it
replaces is stored in a list. Since reoccurring values are also
stored, using a function as in Eq. (24) generates word
length values with the correct distribution. Considering
the example in the previous paragraph, < is a unique
symbol. The first wild card replaces a word with 11

characters, and the second one a word with three char-
acters. Therefore, the log line

ss Connect from< < < < < < < < < < < port < <<

would be generated.

This option for generating log line content is useful, to
evaluate an algorithm which depends on frequent words
and the log line length. An example is automatic pattern
generation algorithms which try to find frequent patterns.
Here the patterns should cover the words that define the
cluster descriptions. For easier analysis the rare content is
replaced by a sequence of a unique character, of the length
corresponding to the length of the replaced content.

In case the cluster representing the outliers occurs only
a time stamp has to be generated. For the content a line of
the list of outliers is chosen.

3. Evaluation and discussion

The following section deals with the evaluation of the
proposed approach for generating realistic NES data. Here
we focus on verifying the high quality of the generated
NES data. Later Sections 4 and 5 aim at a quantitative
evaluation by demonstrating the application areas of the
proposed approach. For evaluating and testing the intro-
duced model for generating NES data we implemented a
prototype — Log File Generator (LFG)! - of the previously
defined model as a Java application. To perform the log line
clustering as presented in Section 2.1, we adopted SLCT [1],
which provides a C implementation of the applied clus-
tering algorithm. The other parts of the model have been
implemented from scratch.

The section is organized as follows: first we describe
the input data we use for the evaluation. Afterwards the
effects caused by changing the support threshold value N
are analyzed and criteria for choosing the optimal support
threshold value are discussed. Finally we evaluate the
Markov chain simulation and the wild card replacement.
The symbols we use in this section are summarized in
Table 2.

1 https://github.com/MarWur/LFG.git.

https://github.com/MarWur/LFG.git.

22 M. Wurzenberger et al. / Information Systems 60 (2016) 13-33

My View|
Menu

Virtual
User

time <=stoptime

+ time > stoptime
Road 50%

Map

50%
— Summary

Fig. 2. This figure shows configuration I, which we use for generating
semi-synthetic log data. The complexity in this configuration is kept
relatively low. As long as the (passed) time is smaller than the recorded
time (specifies how long the user actions are logged) a simulated user is
accessing the same two webpages again and again. In this configuration
only the time when the user does this is variable. After the recorded time
expires, the user logs out and then exits with a probability of 50% and
exits directly with a probability of 50%.

Table 4
Properties of the exploited semi-synthetic log files.

Data set Simulated Recorded Data set Used
users time (h) length configuration
(lines)
uict 1 10 484.239 Config |
u4ct 4 10 1.887.824 Config I
uic2 1 10 413.106 Config Il
u4c2 4 10 1.600.217 Config II

3.1. Log data for testing the proposed model

For the evaluation of the presented approach on the
one hand we use semi-synthetic log data and on the other
hand exploit a reference log file we took from a running
productive system. The properties of these log files and the
reason why we chose those are discussed in the following.

3.1.1. Generating semi-synthetic log data

For evaluating the quality of the proposed model's
output according to the complexity of the input data, using
real data only is not sufficient. The difficulty is that the
complexity of different log data sets from a running pro-
ductive system cannot be easily compared. Therefore we
decided to generate semi-synthetic log files (cf. Table 3) for
testing the proposed approach. Table 3 outlines the dif-
ferences between synthetic, real and semi-synthetic
test data.

For generating semi-synthetic log data, we applied
the approach presented in [13]. This method allows us
to generate log files of any size and of different com-
plexities for one specific given system. Virtual users
perform specified actions on a Web platform, running
the MANTIS Bug Tracker System [13]. In the log files the
events from a Web server, a database and a firewall are

included. Furthermore, it is possible to specify the
number of users operating on the system. Because of
the fact that one can choose which actions are per-
formed in which order by which probability, the com-
plexity of the generated log data can be adjusted easily.
It is further possible to configure the distribution of the
time intervals between two consecutive user actions.
Therefore highly realistic conditions can be simulated.
The actions that the virtual users can perform vary from
clicking on links to looking up and creating entries in
the database. But the opportunity of simulating various
systems with the approach presented in [13] is limited
due to the required resources and the required time
setting up such a system. Since the logged platform is
also used in real settings by companies for managing
bugs in their software, the produced semi-synthetic log
data is representative.

For evaluating the proposed approach we generated
4 different log files by applying the approach from [13]. In
order to simulate different levels of complexity we
implemented two configurations - configuration I (low
complexity, cf. Fig. 2) and configuration II (high complex-
ity, see [13]). For generating the log files the user activity
was logged for 10 h. Table 4 shows that the data set length,
i.e. number of log lines, is mostly effected by the number of
simulated users. In both cases (running one virtual user
and running four concurrent virtual users) changing from
configuration I to configuration II generated around 15%
less log lines. This happens because in configuration II
there are more options for the virtual users to choose their
actions, because in configuration II there are more actions
which raise a longer waiting time until a virtual user starts
his next action.

3.1.2. Reference log data

We further demonstrate that our novel approach also
works for reference log data obtained from a running
productive system. Therefore we use a system consisting
of an Apache Web server, a firewall server and a mon-
itoring server. On the Apache server a static website is set
up. The connections between the Web server and the
monitoring server are observed by the firewall. The
occurring network events are logged in the considered
log file.

For the evaluation we consider a part of the log file,
where 24 h are logged. The file has a length of 436.613 log
lines. The configuration of the system, where the log data
is obtained from, k is also called REF in the following.

3.2. Analysis of the effects caused by changing the support
threshold value N

The support threshold value N, which specifies how
many lines at least have to be assigned to a cluster can-
didate to become a cluster, is the main input parameter of
the proposed model. In the following section we analyze
how changing the support threshold value N effects the
output of the clustering algorithm described in Section 2.1.
The clustering algorithm should achieve the following two
objectives:

M. Wurzenberger et al. / Information Systems 60 (2016) 13-33 23

(i) the cluster description of the cluster a log line is
assigned to should cover a large percentage of the log
line content,

(ii) there should be a low number of outliers.

To evaluate the clustering algorithm, we ran SLCT with
support threshold values N from 5% (0.05) to 0.1% (0.001),
decreasing N by 0.1% (0.001) in every iteration. We did this
for all of the four test log datasets summarized in Table 4
and the reference log file described in Section 3.1.2. We
then analyzed the Mean Coverage Rate (MCR), the Number
of Outliers (NoO) and the Number of Clusters (NoC).

3.2.1. The mean coverage rate (MCR)

The MCR is a metric, which gives knowledge about the
proportion of the log line, which is covered by the
matching cluster's description. For calculating the MCR, we
define ne N as the length, i.e. number of lines, of the
considered log file, [; as the length of the ith log line of the
considered log file, and cv; as the cluster value (cf. Eq. (3))
of the cluster the ith log line has been assigned to. Then
the MCR of a log file can be calculated as shown in Eq. (26),
where % with ie {1, ...,n} specifies the coverage rate for
every log line:

1< cv;

MCR = . ; I (26)

The progression of the MCR is shown in Fig. 3 and some
of the interesting values are summarized in Table 5. Fig. 3
demonstrates that the MCR mainly depends on the con-
figuration used to build the log files. It is independent from
the number of simulated users and also from the length of
the log files. The MCR mainly depends on the used con-
figuration because every virtual user acts with the same
probability. Therefore the distribution of the occurring log
lines is independent from the number of simulated virtual
users. Similar results can be expected for the progression
of the number of clusters. According to the MCR the clus-
tering algorithm performs a bit better with (the less

complex) configuration I. The largest gap between the files
which use configuration I and the files which use config-
uration II can be recognized for support threshold values
N €[0.008,0.028].

In contrast to the semi-synthetic log files, the MCR for
the reference log file (cf. Section 3.1.2) is already very high
for large support threshold values. This suggests a lower
complexity of the system. The fact that the MCR some-
times decreases (with decreasing N) can be explained by
the circumstance that depending on the support threshold
value the log lines are assigned to different clusters with
different cluster descriptions.

3.2.2. The number of outliers (NoO)

Since the NoO is represented in total numbers, Fig. 4
suggests that the NoO progression depends on either the
configuration or the number of simulated virtual users,
which refers to the log file length. The graphs of the NoO

Table 5
Important MCR values. See also Fig. 3.

N Uici U4cC1 uicz v4c2 REF
0.05 0.4721 0.4808 0.4705 0.4747 0.7423
0.03 0.5583 0.5639 0.5184 0.5225 0.8049

0.028 0.6662 0.6661 0.5365 0.5424 0.7909
0.013 0.7409 0.7206 0.6242 0.6295 0.8807
0.008 0.7736 0.7493 0.7664 0.7560 0.9195
0.001 0.9486 0.9320 0.8953 0.8978 0.9165

Table 6
Important NoO values. See also Fig. 4.

N uici U4c1 uicz v4c2 REF
0.05 6860 102,327 10,312 37,141 114
0.03 6860 25,466 10,312 37,141 114
0.023 6860 25,466 40 40 114
0.013 40 40 40 40 114
0.001 1134 20 0 0 114

Mean Coverage Rate (MCR) Progression

l—r—— 7

0.9 %

L B LB N IR ER N B
MCR [U1C1] —+—
MCR [U4C1]

MCR [U1C2] —— +
MCR [U4C2]

MCR [REF] —¥—

Wﬁwu‘ % \ s
05k e £ S Ty]
:::M,‘-JL
0.4 PRI RS S S S RS S S S NS S S S S S T P B S B S SS N S S S N S S Y
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Support Threshold Value in 1/100

Fig. 3. Progression of the MCR for the log files described in Table 4 and the reference log file described in Section 3.1.2. Important values are summarized in

Table 5.

24 M. Wurzenberger et al. / Information Systems 60 (2016) 13-33

Number of Outliers Progression

BT L o R e S I B I e ST
Number of Outliers [U1C1] =+
Number of Outliers [U4C1]
100000 - Number of Outliers [U1C2] —— A
Number of Outliers [U4C2]
Number of Outliers [REF] =¥
80000 - -
w
-2 60000 - 1
3 ‘
40000 -
20000 -1
PR N I . i i AR AR R RS

0 0.005 0.01 0.015

0.02

0.025 0.03 0.035 0.04 0.045 0.05

Support Threshold Value in 1/100

Fig. 4. Progression of the NoO for the log files described in Table 4 and the reference log file described in Section 3.1.2. Important values are summarized in

Table 6.

Number of Outliers Progression in 1/100

0.06 LGN LS A T LR T T N N LRI A
Number of Outliers in 1/100 [U1C1] —+—
Number of Outliers in 1/100 [U4C1]]
0.05 Number of Outliers in 1/100 [U1C2] —— -

Outliers in 1/100
o
o
w
LI I B e e e e

0 0.005

0.01 0.015 0.02

Number of Outliers in 1/100 [U4C2]
Number of Outliers in 1/100 [REF] —#¥—

.

0.025 0.03 0.035 0.04 0.045 0.05

Support Threshold Value in 1/100

Fig. 5. Progression of the NoO in ﬂm for the log files described in Table 4 and the reference log file described in Section 3.1.2.

are also more constant, than the ones of the MCR pro-
gression. The NoO of the files in which four virtual users
were active is significantly higher than the NoO of the files
in which only one virtual user has been simulated. But the
graphs regarding the same configuration show a similar
trend. This can better be seen in Fig. 5, where M9, je. the
percentage of outliers, is plotted. The NoO for the log files,
where configuration Il has been used, is nearly O for sup-
port threshold values N <0.03. For the log files where
configuration I has been used the NoO is nearly O for
N <0.013.

The NoO for the reference log file (cf. Section 3.1.2) is
constantly 114, which corresponds to 0.03% of the file
length. That the NoO is already low for high support
threshold values could be expected, since also the MCR
was already large for high support threshold values. Since
the graphs for the NoO of the semi-synthetic log files are
also piecewise constant, the constant course of the NoO of
the reference log file is consistent with these results.

3.2.3. The number of clusters (NoC)

The progression of the NoC is shown in Fig. 6 and some
relevant values are summarized in Table 7. As previously
mentioned the NoC mainly depends on the used config-
uration. Therefore the graphs in Fig. 6 belonging to the log
files which have been generated using the same config-
uration are nearly congruent. One would expect a bigger
NoC for the log files with the more complex configuration
I, since they contain more different log lines. But for
support threshold value N €[0.011,0.05] no big differences
in the NoC can be recognized. On this interval the NoC also
does not increase very fast. For N < 0.011 the NoC of all log
files increases faster. Then also the NoC for files with
configuration II gets bigger than the NoC of files with
configuration I. For support threshold value N > 0.023 the
NoC in configuration I is even higher than the NoC of log
files using configuration II. This phenomenon can be
explained as follows: in Section 2.2 we mentioned that the
clusters generated with SLCT can be arranged in a kind of

M. Wurzenberger et al. / Information Systems 60 (2016) 13-33 25

Number of Clusters Progression

450 T T T T I BRI T T O TR N T P I]
E Number of Clusters [U1C1] =+]
400 | Number of Clusters [U4C1] p
L Number of Clusters [U1C2] =]
350 | Number of Clusters [U4C2] -
F Number of Clusters [REF] —#— 3
300 [
£ 250 |-
é 200 -
150 [
100 |
50
C P P | | PR eindadad et rird. BRREO T sy
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Support Threshold Value in 1/100

Fig. 6. Progression of the NoC for the log files described in Table 4 and the reference log file described in Section 3.1.2. Important values are summarized in

Table 7.

Table 7
Important NoC values. See also Fig. 6.

N uici U4c1 uicz u4c2 REF
0.05 15 15 12 12 65
0.028 36 38 23 25 74
0.013 48 51 51 58 93
0.008 64 67 122 119 131
0.003 179 178 183 184 265
0.001 193 213 245 239 415

graph theoretical tree. When decreasing the support
threshold value N more specific clusters are generated
which often have the same roots as clusters from previous
iterations. When N becomes smaller SLCT starts earlier to
build more specific clusters for simpler log files, such as
the ones obtained with configuration I.

The NoC of the reference log file (cf. Section 3.1.2) is
always lager than the NoC of the semi-synthetic log files.
But the course of the graph in Fig. 6 is similar to the graphs
of the semi-synthetic log data.

3.2.4. How to choose a suitable support threshold value N

The MCR and the NoO can be used to predict a support
threshold value N that fulfills the two objectives men-
tioned at the beginning of the section:

(i) the cluster description of the cluster a log line is
assigned to should cover a large percentage of the log
line content,

(i) there should be a low number of outliers.

To address objective (i) a criterion could be a specific
threshold value for the MCR, such as MCR > 0.7. Table 8
shows, for which N this assumption is fulfilled.

To address objective (ii) the NoO must be considered.
Since the NoO depends on the log file length, the fraction
of the NoO and log file length which corresponds to the
percentage of outliers (cf. Fig. 5) is of importance. Again a
threshold value for the rate of outliers % is chosen. For

example %0 < 0.01 is assumed, which means less than 1%
outliers. Table 9 shows for which N the in-equation holds.

To fulfill both requirements (MCR > 0.7 and Y20 < 0.01)
we have to consider for each log file the minimum support
threshold values N between Tables 8 and 9. The results are
shown in Table 10.

The results of this analysis show that for the reference
log file (cf. Section 3.1.2) even a support threshold value
higher than 5% of the log file length can be sufficient, since
for N =5% the MCR is already higher than 0.7 and the Y29
lower than 0.01.

The presented procedure for determining an accurate
support threshold value N can be applied for any threshold
values for the criteria regarding the MCR and Y.

3.3. Evaluating the Markov Chain approach

In this section we evaluate the output of the Markov
chain simulation we applied to generate NES data (LFygs).
On the one hand we want to show that the transitions
between consecutive clusters reflect the sequence of the
log lines in the original log file (LF,g), and on the other
hand we want to show that we generate meaningful log
line content. Therefore, we first just look at the transitions
without considering the log line content. Afterwards we
also evaluate how replacing the wild cards influences the
log file model.

3.3.1. Evaluating the transitions

Since we use a Markov chain simulation for generating
LFngs, the transition probabilities of LF,,; and LFygs are by
construction the same if the number of generated lines
tends to infinity. First we look at the transitions without
considering the log line content. We generated for each
LF,rig @ LFngs, using the support threshold value given in
Table 10. For analyzing the transitions in LFygs only the
cluster of each generated log line is stored.

First we consider the cluster relative frequencies CRF.
The CRF of a cluster C; after me N lines is calculated as
shown in Eq. (27), where 1, is the indicator function (cf.

26 M. Wurzenberger et al. / Information Systems 60 (2016) 13-33

Eq. (13)), which is 1, if the jth generated line J; is an ele-
ment of cluster C; and O if not:

m
CRF(C;,m) = % > Uy (l), forallie(l,...,NoC}. 27)
j=1

In Fig. 7 we consider the progression of the difference of the
relative cluster frequencies DRCF between LF,g and LFygs.

Table 8
Support threshold value N with MCR > 0.7 per log file.

Log file N<

uict 0.018

u4c 0.020

uic2 0.009

u4c2 0.008

REF 0.05
Table 9

Support threshold value N with 220 < 0.01 per log file.

Log file N<

uici 0.014

u4cl 0.013

uicz 0.024

u4c2 0.023

REF 0.05
Table 10

Options for N according to the assumptions MCR > 0.7 and Y0 < 0.01 per
log file.

The DRCF of a log file after generating m log lines is cal-
culated as shown in Eq. (28), where relFreq returns the
relative frequency of a cluster in LF,;, (cf. Eq. (29), where
ne N specifies the length of LF,,g):

NoC

DRCF(m) = ﬁ 3 ’relFreq(C?”g)— CRE(CNES, m)), 28)
i=1

relFreq(C;) = CRF(C;,n), forallie{l,...,NoC}. (29)

Fig. 7 shows the progression of the DRCF for the five
considered log files while generating two million log lines.

The graph points out that the DRFC mainly depends on
the number of clusters (cf. Table 10), since the more dif-
ferent clusters are built the more log lines have to be
generated until a specific distribution is reached. The lar-
gest gap between the different log files can be recognized
during generating the first 400.000 lines. Furthermore the
figure demonstrates, that with an increasing number of
generated log lines the DRCF converges to zero. This could
be expected since the transition probabilities of LFygs
converge towards the transition probabilities of LFog,
when the number of generated log lines tends to infinity.
Furthermore the figure shows that the DRCF of each log file
is already smaller than 0.01, i.e. 1%, when the number of
generated log lines reaches the length of LF,g.

Since the outliers are considered as an own cluster
during the generation step (cf. Section 2.3), the relative
frequency of the outliers in LFygs must be similar to the
relative frequency of the outliers in LFoyq.

In Fig. 8 we illustrate the difference between the tran-
sitions of LF,s; and LFygs in case of configuration U1C1;
both files have the same length (484.239 lines). We cal-
culate T% (cf. Eq. (30)) the difference of the transition
matrices T°"¢ and T'ES (cf. Eq. (4)). We normalize the dif-

Log file N < (in o) N< (in lines) MCR > Moo Cluster -
ference over the log file length n so that the cluster size
Uicl 0.014 6779 0.7363 0.000083 47 does not effect the value, i.e. we consider the difference
uact - 0.013 24,541 0.7206 0.000021 51 between the relative frequency of the transitions:
U1C2 0.009 3717 0.7037 0.000048 101
U4C2 0.008 12,801 0.7560 0.000012 119 Qﬁg_t{\{ES’
i 1) P
REF 0.05 21,831 0.7423 0.000261 65 tg_lff _ 1 v , forallije({1,...,NoC}. (30)
0.06 T 1T T T T T
[uici] —+—
[u4ct]
0.05 [U1C2] —%—]
[u4c2]
0.04 1 [REF] =—#— —
[*H
g 0.03 [-
0.02 - 4
o
0.01 - Y= - M
0 1 11 1 1 1 1
o B ® K = G &
W = =4 n 9 @ X
o 8 2 = 0B 3 Q
& o - o = N @
—_—— o ~ S
EE T T
8 8 & 5
- i) L

Number of Generated Log Lines

Fig. 7. Progression of the DRCF. The black line marks the threshold DRCF=0.01. Furthermore the lengths of LF,, are marked.

M. Wurzenberger et al. / Information Systems 60 (2016) 13-33 27

Comparison of Transitions [U1C1] _

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0 2 4 6 8 10121416 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 0

Fig. 8. Differences of the relative frequencies of the transitions between LF,,;; and LFygs with the configuration U1C1.

In Fig. 8 the darker the field of a transition is, the lower is
the difference between the transitions in LFyiz and in
LFyes. Since the transition matrices are sparse (2072 of
2304 transitions are zero) most of the fields are black. The
maximum difference is max; Jt,.djlff =0.00062, i.e. the max-
imum failure is 0.062%. This result matches with the
analysis of the DRCF.

3.3.2. Evaluating the wild card replacement

In the following section we evaluate the quality of the
wild card replacement mechanism. The wild cards are
replaced by using the probability distribution which
describes the relative frequency of the words which occur
in LF,g at the position of the wild card. As a result the
relative frequency of the words replacing the wild cards is
the same as in LFg.

To ensure that we do not create any log lines com-
pletely different from the lines occurring in LF,g, we run
the clustering algorithm again on LFygs, with the same
support threshold value N we used before for generating
them (cf. Table 10). Also LFygs have the same length as the
related LF,z. Afterwards we compare the clusters we
obtain from LF,; and the related LFygs. The results of this
analysis are summarized in Table 11. If LFygs does not have
the same length as the related LF,,g, the support threshold
value must be modified. If LFngs is longer than the related
LForig, a larger number of clusters, which are more specific
than the ones of LF,s can be expected. To avoid this for
example if LFygs is twice as long as the related LF,, the
support threshold value chosen for the analysis must be
twice as big as the one used for generating the log file. If
LFngs is shorter than LF,g, it is the other way around.

Columns 2 and 3 of Table 11 compare the number of
clusters found in LF,. e and in the related LFygs. For all
configurations more clusters have been found in LFygs. This
happens, because in the log line content generation pro-
cess, more similar lines can be produced, which leads to
more specific and more detailed clusters. The 4th column
shows how many clusters are found in both files. Between
54% and 64% of the clusters are equal. Column 5 shows
how many of the different clusters found in LFygs are
subclusters of the clusters of LF,,. A cluster is considered
as a subcluster if it is more specific than another cluster.

None of the clusters found in LFygs, which are different, are
a supcluster. A supcluster is a more generic cluster. Since
we allowed SLCT to generate overlapping clusters also
generic clusters (clusters, where the description only
describes a small part of a log line) are found. Therefore it
was predictable that there would be no new generic
clusters generated. The last column points out that every
cluster found in LFygs describes lines of LFyg. Table 11
shows that for configuration I there exist generated clus-
ters which are different from the clusters of LF,;; and they
are neither subclusters nor supclusters. But since all clus-
ters describe lines of LF,,, we can be sure that we have
not generated a group of log lines significantly different
from LF,., and big enough to form a new cluster. Fur-
thermore a manual analysis of the cluster description
shows that similar clusters can be found in the set of
clusters of LF,;,. Moreover, the rate of outliers occurring in
LFngs is the same as in LFg.

3.4. Findings of the evaluation

The evaluation demonstrates that the proposed model
is able to produce NES data of high quality, i.e. with rea-
listic distribution and complexity, consuming only a low
mount of resources. We further described how the optimal
input parameter for the exploited clustering algorithm can
be evaluated. Therefore, applying the optimal support
threshold value the clustering algorithm meets two major
objectives: (i) the generated cluster descriptions cover a
huge part of the log lines in LF,,, and (ii) only a small
number of outliers is detected. Even so it can be evaluated
if other clustering algorithms provide better results and
improve the performance.

Furthermore, we validated that the Markov chain
simulation preserves the relative frequency of the clusters.
Also the number of transitions relative to the log file
length between two clusters remains nearly the same. This
demonstrates that the log line chronology in LFygs is
approximately the same as in LF,. For this part, future
work will test if a second order Markov chain simulation
improves the results. Also different transition matrices for
different time intervals can be used to raise the realism of
NES data.

28 M. Wurzenberger et al. / Information Systems 60 (2016) 13-33

Table 11

The table compares the number of clusters in LF,g and the related LFygs.
Again LFygs have the same length as LF,;,. Furthermore it summarizes the
number of clusters occurring in both log files. Moreover it is shown how
many of the different clusters from LFygs are sub- or supclusters of the
clusters of the related LF,g. The column named match indicates how
many of the clusters from LFygs describe lines of LF,ig.

Log file C.orig C NES Equal-C. Sub-C. Sup-C. Match

ui1ci 47 48 26 19 0 48
U4cC1 51 56 36 17 0 56
uicz 101 103 65 38 0 103
u4c2 119 137 78 59 0 137
Real 65 109 16 92 1 109

Finally we showed that the wild card replacement
mechanism we implemented does not create completely
new log lines, which would not be found in LF,,.
Therefore we demonstrate that every cluster, which is
found in LFngs, is at least a subcluster of a cluster in LFo.
Furthermore every cluster found in LFygs matches lines of
LFoig.

To improve the log line content generation the relations
between consecutive log lines in a specific time interval
can be further investigated. Then for example also
variable parts such as IP addresses can be meaningful
inserted.

Moreover the section shows that using the right sup-
port threshold value N allows us to generate NES data of
high quality. The quality of the LFygs is underpinned by
calculating the MCR, the NoO and the DRCF. The high MCR
and the low NoO as well as the results we obtained run-
ning the clustering algorithm again on LFygs (cf. Table 11)
indicate that the generated log line content fit with the log
line content occurring in LF,g. While calculating the DRFC
demonstrates that the relative frequency of clusters in
LFngs converges towards the relative cluster frequencies in
LF,ig with increasing number of generated log lines, Fig. 8
exemplary visualizes that also the transition matrices of
LForig and LFygs match each other.

4. An illustrative application

In this section we show an example of application in
which we use LFygs for testing and evaluating the
anomaly detection system (ADS) AECID (Automated
Event Correlation for Incident Detection) [14,15], which
exploits log files for detecting anomalies in computer
networks.

4.1. Functionality of AECID

In contrast to many other rule-based ADSs [16], which
are based on blacklist approaches, AECID is a self-learning
ADS which implements a white-list approach. This means
that the algorithm learns normal system behavior and can
afterwards recognize anomalous behavior. AECID is inde-
pendent from knowledge about the semantics and the
syntax of log lines. While processing log data AECID builds

a system model M, comprising the following main building
blocks [17,15]:

® Search-Patterns(P): Patterns are random substrings of
the processed log lines which categorize the informa-
tion stored in a log line.

® FEvent Classes (C): Event classes classify log lines by using
the known patterns P. Note: One log line can be classi-
fied by more than one class.

® Hypothesis (H): Hypothesis describe possible implica-
tions of log lines based on the event classes
classifying them.

® Rules (R): A rule is a hypotheses which has been proven
as stable. This means the hypothesis has held in a sig-
nificant time of evaluations.

The system model M (cf. Eq. (31)) is therefore defined
by the set of known patterns P, the set of known event
classes C, the set of known hypothesis H and the set of
known rules R:

M=(P,C,H,R) (31)

The rules are used for detecting anomalies in the log
data. Therefore one rule consists of a conditional event,
which is specified by the class Ceng, an implied event,
which is specified by the class Cimp; and a time-window t,,,
which either can be positive or negative. A rule evaluates
to anomalous if C.ng occurs in the log file and the impli-
cation Ccong — Cimpr does not hold in t,.

In the following section we adapt LF,g and LFygs with
the configuration U4C2 (cf. Table 4) for evaluating if the log
data generated with our approach is suitable for testing
and evaluating AECID.

4.2. Is NES data suitable to evaluate AECID?

In the following section we verify that LFygs generated
with our approach is suitable to test and evaluate AECID.
AECID can run on LFngs since it is independent from the
syntax and the semantics of its input log data. Moreover
we intend to show that LFygs can be used to evaluate and
test AECID in a specific user environment, which is char-
acterized by LF,g. We first ran AECID on LF,z with the
configuration U4C2 (cf. Table 4) and then on LFygs we
generated based on LF,;; with the support threshold value
N as given in Table 10 (N=12801). Since AECID depends on
the log file length, both log files consist of 1.600.217 log
lines (cf. Table 4).

To evaluate if LFygs is suitable for testing AECID under
conditions of a real network environment characterized by
a real log data probe, we use for AECID the basic config-
uration given in [15].

To decide if LFngs is suitable to test and evaluate AECID,
we focus on two statistics relevant for assessing AECID's
performance:

(i) Average Line Coverage ALC.
(ii) False Positive Rate FPR.

The ALC is calculated as shown in Eq. (32); it is the ratio
between the Average Number of Enforced Patterns ANEP in

M. Wurzenberger et al. / Information Systems 60 (2016) 13-33 29

Table 12

Results for the ALC and the FPR, when running AECID with the basic configuration on LF,g and LFygs based on the configuration U4C2.

- ALC LFyyig ALC LFngs FPR LForig FPR LFngs |AALC| |AFPR|
Mean 17.5831 18.5233 0.0526 0.0546 0.9402 0.0020
Median 17.7767 18.3686 0.0403 0.0407 0.5919 0.0004
Minimum 15.1145 16.7241 0.0025 0.0088 1.6096 0.0063
Maximum 19.9802 21.6642 0.1922 1.6840 0.0593

Table 13
Steps of the roll-out process of an IDS [18,19].

I. SELECTION

II. DEPLOYMENT
ponents security

I1I. OPERATION
optimization

EVALUATION Type (e.g., HIDS, NIDS), performance, capabilities (logging, detection, prevention), technical support, scalability
Architecture design (e.g., location), staged deployment, component tests, personnel training, configuration, com-

Maintenance, update, tuning, alert handling, alert response, alter configuration, periodical verification and

the event classes C? and the percentage of enforced pat-
terns ¢.° in every class C e C:

ANEP
be
The ALC specifies how many patterns P € P match those log
lines on average that triggered the creation of a new class.
Therefore it is an indicator for the number of patterns cov-
ering every log line on average. Moreover it provides more
knowledge about the set of patterns P and the set of classes
C than the total number of generated patterns and classes.
The FPR is usually calculated as shown in Eq. (33). The
FPR is the ratio between the number of anomalous rule
evaluations if no anomaly occurred, i.e. false positives FP,
and all rule evaluations. The number of rule evaluations is
the sum of the FP and the true negatives TN, i.e. all not
anomalous rule evaluations if no anomaly occurred:

_ FP
T FP+TN

Since we consider both LF,,ig and LFygs as anomaly free, the
FPR is simply the ratio between all anomalous rule eva-
luations and all rule evaluations. Therefore it can be called
anomalous evaluation rate.

Table 12 shows the results of the analysis of the ALC and
the FPR, when running AECID with the basic configuration
on LF,rg and LFygs. Since AECID uses pseudo random
numbers for picking patterns and generating classes and
hypotheses, we executed it 100 times with the same
configuration and then calculated the mean, the median,
the minimum and the maximum of the results.

First we focus on the ALC. The ALC for LF,., is on
average 17.5 patterns and for LFygs it is around 18.5 pat-
terns. The median of both files is even closer than the
mean. Both the minimum and the maximum ALC in LEygs
are slightly larger than the ALC values obtained with LFog.
In both cases the range between the minimum and the

ALC =

(32)

FPR (33)

2 Every event class C enforces a number of patterns P, which have to
occur in a log line classified by C (cf. [15]).

3 ¢e is one of the AECID's input parameters specifying, which per-
centage of patterns matching to the log line processed during the gen-
eration of the class C has to be enforced in the class C (cf. [15]).

maximum value of the ALC is around 4.9. On average the
difference between the ALC of LF,,g and the ALC of LFygs is
less than 1 pattern. The table also shows that according to
the ALC the algorithm performs slightly better with LFngs.
This can be explained by the fact that LFygs is based on
more deterministic conditions.

Since the FPR is a ratio it is given in percent. The
average FPR obtained with LFygs is just 0.2% higher than
the FPR obtained with LF,,. The gap between the median
values is only 0.04%. The minimum and the maximum
value of both files show that the range of the FPR is quite
large. The results show that AECID is not deterministic,
because of the influence of the pseudo random numbers,
which are used to control the generation patterns, classes,
hypotheses and rules. But since AECID implements a self-
learning approach and the tested log files only map 10 h in
real time this dependency would be lowered by training
the algorithm with longer log files.

According to the ALC and the FPR values AECID obtains
very similar results for both LF,g and LFygs. This proves
that it is possible to effectively test and evaluate AECID's
performance in a network environment with the char-
acteristics of LFog, by using NES data generated with our
approach.

4.3. Experiences with AECID

After verifying that our generated NES data is suitable
for testing and evaluating AECID, it can also be used for
identifying the optimal configuration of AECID for a spe-
cific network environment. Therefore the seed value for
generating pseudo random numbers in AECID should be
fixed to provide comparable results. Then the input para-
meters of AECID can be changed and applied in various
combinations. The FPR and the ALC then can be exploited
to decide, which is the optimal configuration. Since the
considered log data should be anomaly free (however
otherwise the FPR of every generated rule has to be com-
pared) the FPR should be low and the ALC high.

Also attacks for testing the attack detection capability
of AECID can be simulated with our approach. For example
to simulate an attacker that tries to access the data base
without being detected, the logging function of the data

30 M. Wurzenberger et al. / Information Systems 60 (2016) 13-33

base server would be disabled. Therefore the generation of
log lines related to the data base server can be suppressed
in a specified time interval. To perform more complex
attacks also the transition matrix can be modified for a
specified time interval.

5. Roll-out of an IDS

In this section we define the roll-out of an intrusion
detection system (IDS) within a medium or large-scale
enterprise IT environment in a step-by-step set-up process
to show how much effort is required to achieve this. The
two standards [18] published by the International Orga-
nization for Standardization (ISO) and [19] published by
the National Institute of Standards and Technology (NIST)
serve as starting point. Other reports discussing roll-out of
IDSs following similar approaches are [20-22]. Referring to
this procedure we point out which steps can be simplified
and optimized with our approach.

The roll-out of an IDS can be structured as shown in
Table 13. According to the standards [18,19] the three main
parts of the set-up process are selection, deployment and
operation. Furthermore evaluation is part of all these three
steps. Table 13 also summarizes which criteria are con-
sidered when and which actions are performed.

In the roll-out process the EVALUATION of IDSs is the
biggest challenge. Reasons for this on the one hand are
that no standardized methodologies for testing IDSs exist
and on the other hand there are no standard test envir-
onments for IDSs available [19]. Hence organizations
depend on vendor brochures, white-papers and product
demonstrations, which are usually not objective and
therefore insufficient and also on third-party reviews of
individual products and comparisons of multiple products.
Since every network infrastructure is different also tests in
lab environments are insufficient to rate the performance
of IDSs in specific environments. This circumstances force
organizations to perform evaluations on their running
productive systems, which might expose the infrastructure
to dangerous or unstable situations [18,19]. Therefore, as
shown in Section 3 our novel approach allows to generate
high quality NES data, which enables detailed simulation
of an organization's network infrastructure which then can
be exploited for extensive evaluations.

5.1. Selection

Since there exist various IDSs, the first step of enrolling
a product is SELECTION. Therefore on the one hand the
criteria summarized in Table 13 and on the other hand the
system environment, IDS security policies and financial
costs build a basis for selecting the optimal IDS candidates.
Decisions based on system environment, IDS security
policies and financial costs as well as on the type of the
required IDS and the provided technical support have to be
made by ICT security experts. The other criteria account for
with evaluation methods as mentioned in the beginning of
this section. In this context our approach allows us to
evaluate the performance of IDSs as partly shown in Sec-
tion 4. In opposite to testing an IDS directly in an

organization's network infrastructure our approach also
allows us to evaluate the scalability of a product, for
example by rescaling the time differences between con-
secutive log lines, which simulates a larger volume of
network traffic. The scalability of a product is important,
because otherwise in case an organization's network
infrastructure grows a new IDS solutions has to be selec-
ted. Our approach can be also applied for testing cap-
abilities of a product. For example to evaluate the detec-
tion capability of an IDS the system it monitors has to be
attacked. In Section 4.3 we discussed how cyber attacks
can be simulated with our approach, which is important
since it is not advisable to verify the effectiveness of an IDS
in a network environment by self-attacking it.

5.2. Deployment

After selecting an IDS the DEPLOYMENT process starts.
First an architecture of the IDS implementation has to be
designed, which includes specifying the locations of sen-
sors and also interactions with other system components
are taken into account. Further both standards [18,19]
recommend a staged deployment, i.e. deploying an IDS
first only for a small part of a network and then expanding
it incremental, which makes it easier for the staff to
acquire insights into new products. Furthermore compo-
nent tests simplify the evaluation of new products and
lower the risk of problems during the deployment phase.
Our approach also allows performing off-line component
tests with highly realistic NES data. Also the personnel has
to be trained to get familiar with new IDS solutions. NES
data makes it possible to accomplish this training within a
sandbox environment and outside a running productive
system. A major point of deployment is identifying the
optimal configuration of the deployed IDS, i.e. the config-
uration that addresses the highest risks of the organiza-
tion. The configuration should also be part of the selection
phase, since it strongly influences the performance and
effectiveness of an IDS. Since the configuration heavily
depends on the network infrastructure - every network is
different - it cannot be evaluated in a laboratory envir-
onment or based on published tests and comparisons of
vendors. Here our generated NES data offers the advantage
that on the same highly realistic data set several config-
urations can be easily and fast tested and compared, which
enhances and accelerates the configuration process tre-
mendously — partly shown in Section 4.

5.3. Operation

After the deployment the OPERATION phase follows. In
this context operation among other things covers main-
tenance, updating, alert handling and alert response, and
also tuning the IDS as well as altering its configuration.
Therefore periodic verification and evaluation has to be
performed to continuously optimize the IDS. Updates, for
example, can implicate altering the configuration. There-
fore it is possible to test the updated software first with
generated NES data, which allows us to adopt the config-
uration immediately. Since also the monitored infra-
structure usually underlies frequent changes, it is possible

M. Wurzenberger et al. / Information Systems 60 (2016) 13-33 31

to periodically generate new NES data files with our
approach easily and fast to continuously verify and eval-
uate the performance and effectiveness of the deployed
IDS. If required the IDS and configuration can be tuned and
optimized accordingly. Also threats are evolving over time
and therefore our approach allows by simulating new
threats in NES data files off-line testing of the detection
capabilities of the applied IDS.

This demonstrates that our approach can be applied to
simplify and optimize the roll-out of an IDS; hence it can be
exploited especially for evaluation - which more or less is
part of the whole process - configuration and optimization.

6. Background and related work

Data logging has a widespread application area, also
beyond the enterprise Information and Communication
Technology (ICT) sector, e.g. embedded systems for run-
time verification. For example clinical information log files
have been used for automated identification of patient
specific clinician information needs [23]. Also in space
engineering, log data is for example used to perform
runtime verification [24].

In the ICT sector log files and log data analysis are used
for various purposes. For example log data can be used for
error analysis [25]. In this context also the analysis of
empirical and statistical properties of failure and error logs
is important [26]. Furthermore log data is investigated for
digital forensics [27]. The field of digital forensics is wide-
spread. In this area also research for modern technologies,
including cloud computing [28,29] and file sharing [30] is
done. Moreover log data is exploited by frameworks for
ensuring accountability [31]. Database logs for example can
be used to back up and restore database content in case of a
system crash or a destruction caused by an unauthorized
access violation [32,33]. On the other hand Web log data
forms the basis of mining the interests of users of a Website
[34]. In this context for example frequent pattern mining in
log files is performed [35]. Also security- and computer
network analysis tools such as anomaly detection [36] and
intrusion detection systems [16] exploit log files to identify
anomalous behavior. Additionally log files are a major part
of system monitoring [37], which is also important for
modern technologies, e.g. mobile devices [38]. Since cars
and other vehicles get smarter and smarter also monitoring
systems are invented to track a drivers actions [39].

Especially testing and evaluating tools for security- and
computer network analysis on running productive systems
raises two major disadvantages: on the one hand, during this
period the productive system cannot be secured properly
and on the other hand private informations are exposed,
which ends up in violations of privacy. Furthermore, a run-
ning productive system must be attacked for evaluating if a
security solution can detect anomalous behavior at all. Due
to this fact this cannot be done reasonably. On the other
hand, tests under conditions similar to those in a laboratory
environment are usually not realistic enough, because of the
missing complexity produced by the noisy network base
load. Therefore, highly realistic test environments for
sandbox-benchmarking are required, which allow us to

evaluate security mechanisms outside of running productive
systems. Some examples for such sandboxes are:

e Virtual Security Testbed (ViSe) [40]: ViSe is a virtual
environment, which allows going back to a former
snapshot, if a system got infected by malware or was
put out of action.

® [Lincoln Adaptable Real-Time Information Assurance Test-
bed (LARIAT) [41]: LARIAT was the first attempt, to
invent a comprehensive test environment for IDSs.

® Lincoln Laboratory Simulator (LLSIM) [42]: LLSIM is a
completely virtual further development of LARIAT,
implemented in Java [43]. LLSIM offers a customizable
test environment, in which hundreds of components of
standard hardware can be simulated.

® Testbed for Evaluating Intrusion Detection Systems (TIDeS)
[44]: TIDeS is a test environment, which tries to
quantify the evaluation process, to choose a suitable
IDS for a specific network environment.

® Cyber Defense Technology Experimental Testbed (DETER)
[45]: Among cyber-security scientists DETER is one of
the leading test environments. It was invented within a
collaboration of the National Science Foundation, the US
Department of Homeland Security, UC Berkeley and
McAffee Research.

The presented test environments all follow network cen-
tralized approaches, but a lot of security- and computer
network analysis tools operate on a higher log-level-layer
[46,47]. Therefore, functionalities are needed, which also
simulate human users' behavior. The approach presented
in [13] for example simulates a simple network, where
virtual users perform specified actions on a Web platform
and log files from monitoring a Web server, a database and
a firewall are produced.

Simulating complex networks usually consumes a lot of
physical resources and requires a high financial budget.
Furthermore it is exceptionally hard to model SCADA sys-
tems (due to strict temporal constraints) or the hardware of
mainframe networks. Therefore cost-efficient and easy to
use approaches for simulating ICT networks are required.

Our proposed approach uses a log line clustering
algorithm to provide knowledge about the properties of
the network which should be modeled. Traditional clus-
tering methods [48,49] work well for data with numerical
attributes in low-dimensional data spaces, with dimension
k below 10. But (i) the attributes of a log line are of cate-
gorical nature and (ii) the data space in which a log line is
represented, can be high-dimensional, since the number of
words a log line consists of is not limited. Problem (ii)
occurs, because traditional clustering methods do not
detect clusters, which exist in subspaces of the original
data space [50]. Nowadays various algorithms for cluster-
ing high-dimensional data with categorical attributes
exist. Examples are CLIQUE [50], MAFIA [51], PROCLUS [52]
and CACTUS [53], which all try to avoid the above-
mentioned problems, which can occur using traditional
clustering methods. But, most of the existing high-
dimensional clustering algorithms for data with catego-
rical attributes are not applicable for clustering log file
data. The main reason is that most of these algorithms,

32 M. Wurzenberger et al. / Information Systems 60 (2016) 13-33

including those mentioned above, do not take into account
the basic characteristics of log files. Therefore we decided
to apply the clustering algorithm first published in [1],
which was especially invented for clustering log lines.
For generating synthetic log data based on the results
of log line clustering we use results of the Markov chain
theory [8,54|. Methods for simulating Markov chains can
be found in [11,55]. Markov chain models have been used
in various application areas to make forecasts. In the
meteorology they have been used for example to predict
wind speeds [56] and rain days [57,58]. Also supermarket
inventory systems have been simulated applying a Markov
chain model [59]. In the genetic research DNA sequences
have been analyzed using the Markov theory [60,61]. In
software engineering Markov chains are used for statistical
testing of software [62]. These are just a few examples,
where Markov chains have been applied to model
sequences of events. Therefore it is reasonable to consider
Markov chains for generating sequences of log lines.

7. Conclusion and future work

In this paper we presented a novel approach for generat-
ing network event sequence (NES) data for sandbox-
benchmarking of security- and network analysis tools. The
approach takes as an input a small set of log data obtained
from a real network environment. On the input data first a log
line clustering algorithm is applied and then a Markov chain
simulation is performed. While log line clustering enables
classification of log lines and generating log line description,
Markov chain simulation guarantees realistic log line
sequences. This model allows the generation of log files of any
size and configurable complexity based on the properties of a
specific network environment. To verify the effectiveness and
high quality of the so generated log data we first performed a
qualitative evaluation. Therefore we introduced novel metrics
such as the mean coverage rate MCR and the difference of the
relative cluster frequencies DRCF. To prove the similarity
between the original and the generated log file we executed
the clustering algorithm on the generated log data and com-
pared the clusters obtained with the original and those
obtained with the generated log data.

Next to this qualitative evaluation, we also presented
quantitative evaluation results. Therefore we first applied
an anomaly detection system called AECID on the NES data
as an illustrative example of an application for the gener-
ated NES data. We proved that the NES data is feasible for
testing, evaluating and discovering suitable configurations
of AECID. Therefore we executed AECID with LF,; and
LFngs and compared the average line coverage ALC and the
false positive rate FPR. Moreover we discussed the concept,
how the optimal configuration of AECID can be evaluated
and how attacks can be simulated using our approach for
generating NES data. Additionally we defined a step-by-
step enrollment process for IDSs in real environments and
in accordance to major standards from ISO and the NIST
and argued, which parts can be simplified and optimized
applying the proposed approach.

The proposed model is composed by several modules,
which can be flexibly improved or replaced. For example

SLCT, the log line clustering algorithm we used can be
exchanged with other clustering methods. Furthermore the
Markov chain simulation can be tuned. Different transition
matrices for different time periods could be utilized since the
network behavior changes over the day (nobody is working
during the night and also update and backup processes are
mostly done during the night). Moreover the creation of a
log line can depend not only on one preceding log line, but
also on a set of preceding log lines.

Our work has important implications on future methods
to design, evaluate and run anomaly detection systems, but
also to test network performance tools, and other tools that
process log data. On the one hand testing in a running pro-
ductive system is complex, errorprone and risky. Therefore
evaluation in an active ICT network creates negative impact
on the system stability. This leads to the approach imple-
menting sanboxes to perform off-line tests. Hence the
question how to get realistic stimuli has to be answered. The
proposed model therefore demonstrates a novel approach
for generating NES data. On the other hand testing in a
running productive system raises privacy issues, since user
names, passwords, IP addresses, etc. get exposed. Thus log
files first have to be sensitized. Since the proposed model
only needs a small piece of log data as input, this can be done
manually. Afterwards based on the input a sensitized NES
data file of any size can be generated, which then can be
used for off-line tests under highly realistic conditions.

Acknowledgments

This work was partly funded by the European Union
FP7 Project ECOSSIAN (607577) and carried out in course
of a master thesis at the Vienna University of Technology.

References

[1] R. Vaarandi, A data clustering algorithm for mining patterns from
event logs, in: 3rd IEEE Workshop on IP Operations Management,
2003. (IPOM 2003), 2003, pp. 119-126. http://dx.doi.org/10.1109/
IPOM.2003.1251233.

[2] J. Stearley, Towards informatic analysis of syslogs, in: 2004 IEEE
International Conference on Cluster Computing, 2004, pp. 309-318.
http://dx.doi.org/10.1109/CLUSTR.2004.1392628.

[3] R. Vaarandi, SLCT Version 0.05, ¢http://ristov.users.sourceforge.net/
slct/y, 2007.

[4] R. Vaarandi, Mining event logs with slct and loghound, in: Network
Operations and Management Symposium, 2008. NOMS 2008. IEEE,
Salvador, Bahia, Brazil, 2008, pp. 1071-1074. http://dx.doi.org/10.1109/
NOMS.2008.4575281.

[5] R. Vaarandi, K. Podin$, Network ids alert classification with frequent
itemset mining and data clustering, in: 2010 International Con-
ference on Network and Service Management (CNSM), IEEE, Niagara
Falls, Canada, 2010, pp. 451-456.

[6] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Uni-
versitext (Berlin. Print), Springer, New York, 2012.

[7] B. Everitt, S. Landau, M. Leese, D. Stahl, Cluster Analysis, Wiley Series
in Probability and Statistics, Wiley, Chichester, UK, 2011.

[8] J.R. Norris, Markov Chains, no. 2, Cambridge University Press, New
York, USA, 1998.

[9] CM. Grinstead, J.L. Snell, Introduction to Probability, American
Mathematical Society, Swarthmore, USA, 1997.

[10] A. Klenke, Wahrscheinlichkeitstheorie, vol. 1, Springer, Berlin, Germany,
2006.

[11] O. Héggstrom, Finite Markov Chains and Algorithmic Applications,
vol. 52, Cambridge University Press, Cambridge, UK, 2002.

http://dx.doi.org/10.1109/IPOM.2003.1251233
http://dx.doi.org/10.1109/IPOM.2003.1251233
http://dx.doi.org/10.1109/CLUSTR.2004.1392628
http://ristov.users.sourceforge.net/slct/
http://ristov.users.sourceforge.net/slct/
http://dx.doi.org/10.1109/NOMS.2008.4575281
http://dx.doi.org/10.1109/NOMS.2008.4575281
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref6
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref6
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref7
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref7
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref10
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref10
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref11
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref11

M. Wurzenberger et al. / Information Systems 60 (2016) 13-33 33

[12] N. Kusolitsch, MaB-und Wahrscheinlichkeitstheorie: Eine Einfiih-
rung, Springer-Verlag, Vienna, Austria, 2011.

[13] F. Skopik, G. Settanni, R. Fiedler, 1. Friedberg, Semi-synthetic data set
generation for security software evaluation, in: 2014 Twelfth Annual
International Conference on Privacy, Security and Trust (PST), IEEE,
Toronto, Canada, 2014, pp. 156-163.

[14] L. Friedberg, F. Skopik, R. Fiedler, Cyber Situational Awareness
Through Network Anomaly Detection: State of the Art and New
Approaches, 2015.

[15] 1. Friedberg, F. Skopik, G. Settanni, R. Fiedler, Combating advanced
persistent threats: from network event correlation to incident
detection, Comput. Secur. 48 (2015) 35-57.

[16] S. Axelsson, Intrusion Detection Systems: A Survey and Taxonomy,
Technical Report, Technical report Chalmers University of Technol-
ogy, Goteborg, Sweden, 2000.

[17] E. Skopik, L. Friedberg, R. Fiedler, Dealing with advanced persistent
threats in smart grid ict networks, in: Innovative Smart Grid Tech-
nologies Conference (ISGT), 2014 IEEE PES, IEEE, Washington, USA,
2014, pp. 1-5.

[18] L-T.R. ISO, Iso/iec 27039, Information Technology—Security Techni-
ques—Selection, Deployment and Operations of Intrusion Detection
Systems.

[19] K. Scarfone, P. Mell, Guide to intrusion detection and prevention
systems (idps)(draft), NIST Special Publ. 800 (2012) 94.

[20] J. Snyder, Guide to Network Intrusion Prevention Systems, PCWorld,
¢http://www.pcworld.com/article/144634/guide_network_intru
sion_prevention_systems.html), 2008.

[21] P. Innella, O. McMillan, D. Trout, Managing Intrusion Detection
Systems in Large Organizations, Part One, International Series in
Operations Research & Management Science, Symantec, (http://
www.symantec.com/connect/articles/managing-intrusion-detec
tion-systems-large-organizations-part-one}, 2010.

[22] E. Yakabovicz, Intrusion Detection System Deployment Recommenda-
tions, TechTarget, (http://searchfinancialsecurity.techtarget.com/tip/
Intrusion-detection-system-deployment-recommendations), 2008.

[23] E.S. Chen,].J. Cimino, Automated discovery of patient-specific clin-
ician information needs using clinical information system log files,
in: AMIA annual symposium proceedings, vol. 2003, American
Medical Informatics Association, Washington, USA, 2003, p. 145.

[24] H. Barringer, A. Groce, K. Havelund, M. Smith, Formal analysis of log
files, J. Aerosp. Comput. Inf. Commun. 7 (11) (2010) 365-390.

[25] T.-T.Y. Lin, D.P. Siewiorek, Error log analysis: statistical modeling and
heuristic trend analysis, IEEE Trans. Reliab. 39 (4) (1990) 419-432.

[26] RK. Sahoo, M.S. Squillante, A. Sivasubramaniam, Y. Zhang, Failure
data analysis of a large-scale heterogeneous server environment, in:
2004 International Conference on Dependable Systems and Net-
works, IEEE, Florence, Italy, 2004, pp. 772-781.

[27] S. Raghavan, Digital forensic research: current state of the art, CSI
Trans. ICT 1 (1) (2013) 91-114.

[28] T. Sang, A log based approach to make digital forensics easier on
cloud computing, in: 2013 Third International Conference on Intel-
ligent System Design and Engineering Applications (ISDEA), IEEE,
Hong Kong, 2013, pp. 91-94.

[29] K. Ruan, J. Carthy, T. Kechadi, I. Baggili, Cloud forensics definitions
and critical criteria for cloud forensic capability: an overview of
survey results, Digit. Invest. 10 (1) (2013) 34-43.

[30] C. Quinn, M. Scanlon, J. Farina, M.-T. Kechadi, Forensic analysis and
remote evidence recovery from syncthing: An open source decen-
tralised file synchronisation utility, Digital Forensics and Cyber
Crime, Springer, Seoul, South Korea, 2015, 85-99.

[31] S. Sundareswaran, A.C. Squicciarini, D. Lin, Ensuring distributed
accountability for data sharing in the cloud, IEEE Trans. Depend.
Secure Comput. 9 (4) (2012) 556-568.

[32] R. Fang, H.-I. Hsiao, B. He, C. Mohan, Y. Wang, High performance
database logging using storage class memory, in: 2011 IEEE 27th
International Conference on Data Engineering (ICDE), IEEE, Hann-
over, Germany, 2011, pp. 1221-1231.

[33] P. Frithwirt, P. Kieseberg, S. Schrittwieser, M. Huber, E. Weippl,
Innodb database forensics: reconstructing data manipulation quer-
ies from redo logs, in: 2012 Seventh International Conference on
Availability, Reliability and Security (ARES), IEEE, Prague, Chzech
Republic, 2012, pp. 625-633.

[34] T. Murata, K. Saito, Extracting users' interests from web log data, in:
Proceedings of the 2006 IEEE/WIC/ACM International Conference on
Web Intelligence, IEEE Computer Society, Hong Kong, 2006,
pp. 343-346.

[35] R. Ivancsy, 1. Vajk, Frequent pattern mining in web log data, Acta
Polytech. Hung. 3 (1) (2006) 77-90.

[36] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey,
ACM Comput. Surv. (CSUR) 41 (3) (2009) 15.

[37] S.E. Hansen, E.T. Atkins, Automated system monitoring and notifi-
cation with swatch, in: LISA, vol. 93, 1993, pp. 145-152.

[38] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, A. Markopoulou,
Antmonitor: a system for monitoring from mobile devices, in: Pro-
ceedings of the 2015 ACM SIGCOMM Workshop on Crowdsourcing and
Crowdsharing of Big (Internet) Data, ACM, London, UK, 2015, pp. 15-20.

[39] R.S. Ling, R.A. Hutchinson, W.J. Steigerwald III, W.A. Say, P.L. O'mal-
ley, D.A. Shrallow, W.C. Everett, RJ. McMillan, Vehicle Monitoring
System, US Patent 8,140,358, March 20, 2012.

[40] M. Richmond, Vise: A Virtual Security Testbed, University of Cali-
fornia, Santa Barbara, Technical Report.

[41] LM. Rossey, R.K. Cunningham, D.J. Fried,].C. Rabek, R.P. Lippmann, J.
W. Haines, M. Zissman, et al., Lariat: Lincoln adaptable real-time
information assurance testbed, in: Aerospace Conference Proceed-
ings, 2002, vol. 6, IEEE, Big Sky, Montana, USA, 2002, pp. 6-2671.

[42] J.W. Haines, S. Goulet, R.S. Durst, T.G. Champion, et al., LIsim: Net-
work simulation for correlation and response testing, in: Informa-
tion Assurance Workshop, 2003, IEEE Systems, Man and Cybernetics
Society, IEEE, New York, USA, 2003, pp. 243-250.

[43] Oracle Corporation, Java Development Kit Version 8 Update 45,
(http://www.java.com), 2015.

[44] G. Singaraju, L. Teo, Y. Zheng, A testbed for quantitative assessment
of intrusion detection systems using fuzzy logic, in: Information
Assurance Workshop, 2004. Proceedings. Second IEEE International,
IEEE, Charlotte, North Carolina, USA, 2004, pp. 79-93.

[45] T. Benzel, The science of cyber security experimentation: the deter
project, in: Proceedings of the 27th Annual Computer Security
Applications Conference, ACM, Orlando, FL, USA, 2011, pp. 137-148.

[46] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, M. Rajarajan, A
survey of intrusion detection techniques in cloud, J. Netw. Comput.
Appl. 36 (1) (2013) 42-57.

[47] R.P. Menon, Log analysis based intrusion prediction system, in:
Emerging ICT for Bridging the Future-Proceedings of the 49th
Annual Convention of the Computer Society of India (CSI), vol. 1,
Springer, Hyderabad, India, 2015, pp. 409-416.

[48] P. Berkhin, Grouping multidimensional data, A Survey of Clustering
Data Mining Techniques, Springer, Berlin, Germany, 2006, 25-71.

[49] R. Xu, D. Wunsch, et al., Survey of clustering algorithms, IEEE Trans.
Neural Netw. 16 (3) (2005) 645-678.

[50] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic Sub-
space Clustering of High Dimensional Data for Data Mining Appli-
cations, vol. 27, ACM, New York, USA, 1998.

[51] S. Goil, H. Nagesh, A. Choudhary, Mafia: Efficient and scalable sub-
space clustering for very large data sets, in: Proceedings of the 5th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 1999, pp. 443-452.

[52] C.C. Aggarwal, J.L. Wolf, PS. Yu, C. Procopiuc, J.S. Park, Fast algo-
rithms for projected clustering, in: ACM SIGMoD Record, vol. 28,
ACM, Philadelphia, USA, 1999, pp. 61-72.

[53] V. Ganti,]. Gehrke, R. Ramakrishnan, Cactusclustering categorical
data using summaries, in: Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ACM, San Diego, USA, 1999, pp. 73-83.

[54] R. Serfozo, Basics of Applied Stochastic Processes, Springer Science &
Business Media, Berlin, Germany, 2009.

[55] W. Ching, M. Ng, Markov Chains: Models, Algorithms and Applica-
tions, International Series in Operations Research & Management
Science, Springer, New York, USA, 2006.

[56] S.P. Kani, M. Ardehali, Very short-term wind speed prediction: a
new artificial neural network-Markov chain model, Energy Convers.
Manag. 52 (1) (2011) 738-745.

[57] C. Haan, D.M. Allen,]. Street, A Markov chain model of daily rainfall,
Water Resourc. Res. 12 (3) (1976) 443-449.

[58] R. Singh, C. Patel, M. Yadav, P. Singh, K. Singh, et al., Weekly rainfall
analysis and markov chain model probability of dry and wet weeks
at Varanasi in Uttar Pradesh, Environ. Ecol. 32 (3) (2014) 885-890.

[59] C. Poudyal, D.N. Khanal, S. By, R. Stockbridge, A Discrete Time Mar-
kov Chain Model in Supermarkets for a Periodic Inventory System
with One Way Substitution.

[60] H. Almagor, A markov analysis of dna sequences,]. Theoret. Biol. 104
(4) (1983) 633-645.

[61] A. Hobolth, A markov chain monte carlo expectation maximization
algorithm for statistical analysis of dna sequence evolution with
neighbor-dependent substitution rates,]. Comput. Graph. Stat.

[62] J. Whittaker, M.G. Thomason, et al., A markov chain model for statis-
tical software testing, IEEE Trans. Softw. Eng. 20 (10) (1994) 812-824.

http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref12
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref12
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref15
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref15
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref15
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref15
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref19
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref19
http://www.pcworld.com/article/144634/guide_network_intrusion_prevention_systems.html
http://www.pcworld.com/article/144634/guide_network_intrusion_prevention_systems.html
http://www.symantec.com/connect/articles/managing-intrusion-detection-systems-large-organizations-part-one
http://www.symantec.com/connect/articles/managing-intrusion-detection-systems-large-organizations-part-one
http://www.symantec.com/connect/articles/managing-intrusion-detection-systems-large-organizations-part-one
http://searchfinancialsecurity.techtarget.com/tip/Intrusion-detection-system-deployment-recommendations
http://searchfinancialsecurity.techtarget.com/tip/Intrusion-detection-system-deployment-recommendations
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref24
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref24
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref24
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref25
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref25
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref25
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref27
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref27
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref27
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref29
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref29
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref29
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref29
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref30
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref30
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref30
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref30
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref30
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref31
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref31
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref31
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref31
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref35
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref35
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref35
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref36
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref36
http://www.java.com
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref46
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref46
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref46
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref46
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref48
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref48
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref48
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref49
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref49
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref49
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref54
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref54
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref55
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref55
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref55
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref55
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref56
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref56
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref56
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref56
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref57
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref57
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref57
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref58
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref58
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref58
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref58
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref60
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref60
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref60
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref62
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref62
http://refhub.elsevier.com/S0306-4379(15)30212-X/sbref62

	Complex log file synthesis for rapid sandbox-benchmarking of security- and computer network analysis tools
	Introduction
	Theoretical model
	Log line clustering
	Assigning log lines to clusters
	Arranging clusters in the NES data file
	Populating log lines
	Generating time stamps
	Generating log line content

	Evaluation and discussion
	Log data for testing the proposed model
	Generating semi-synthetic log data
	Reference log data

	Analysis of the effects caused by changing the support threshold value N
	The mean coverage rate (MCR)
	The number of outliers (NoO)
	The number of clusters (NoC)
	How to choose a suitable support threshold value N

	Evaluating the Markov Chain approach
	Evaluating the transitions
	Evaluating the wild card replacement

	Findings of the evaluation

	An illustrative application
	Functionality of AECID
	Is NES data suitable to evaluate AECID?
	Experiences with AECID

	Roll-out of an IDS
	Selection
	Deployment
	Operation

	Background and related work
	Conclusion and future work
	Acknowledgments
	References

