
c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

Dynamic log file analysis: An unsupervised

cluster evolution approach for anomaly detection

�

Max Landauer

a , ∗, Markus Wurzenberger

a , Florian Skopik

a ,
Giuseppe Settanni a , Peter Filzmoser

b

a Austrian Institute of Technology, Austria
b Vienna University of Technology, Austria

a r t i c l e i n f o

Article history:

Received 5 June 2018

Revised 7 August 2018

Accepted 29 August 2018

Available online 4 September 2018

Keywords:

Log data

Cluster evolution

Anomaly detection

String clustering

Unsupervised learning

Incremental clustering

Time series analysis

a b s t r a c t

Technological advances and increased interconnectivity have led to a higher risk of previ-

ously unknown threats. Cyber Security therefore employs Intrusion Detection Systems that

continuously monitor log lines in order to protect systems from such attacks. Existing ap-

proaches use string metrics to group similar lines into clusters and detect dissimilar lines

as outliers. However, such methods only produce static views on the data and do not suffi-

ciently incorporate the dynamic nature of logs. Changes of the technological infrastructure

therefore frequently require cluster reformations. Moreover, such approaches are not suited

for detecting anomalies related to frequencies, periodic alterations and interdependencies

of log lines. We therefore propose a dynamic log file anomaly detection methodology that

incrementally groups log lines within time windows. Thereby, a novel clustering mechanism

establishes links between otherwise isolated collections of clusters. Cluster evolution tech-

niques analyze clusters from neighboring time windows and determine transitions such as

splits or merges. A self-learning algorithm then detects anomalies in the temporal behavior

of these evolving clusters by analyzing metrics derived from their developments. We apply

a prototype in an illustrative scenario consisting of a log file containing known anomalies.

We thereby investigate the influences of certain parameters on the detection ability and

the runtime. The evaluation of this scenario shows that 61.8% of the dynamic changes of

log line clusters are correctly identified, while the false alarm rate is only 0.7%. The abil-

ity of efficiently detecting these anomalies while self-adjusting to changes of the system

environment suggests the applicability of the introduced approach.

© 2018 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

N
s

S

d
c
r
t

h
0
(

. Introduction

owadays, digital systems that exist in all kinds of forms and

cales are omnipresent. Despite many benefits that can be
� Massive extension of Landauer et al. (2018)
∗ Corresponding author.

E-mail addresses: max.landauer@ait.ac.at (M. Landauer), markus.wur
kopik), giuseppe.settanni@ait.ac.at (G. Settanni), peter.filzmoser@tuwi

j

ttps://doi.org/10.1016/j.cose.2018.08.009
167-4048/© 2018 The Authors. Published by Elsevier Ltd. This is an ope
 http://creativecommons.org/licenses/by-nc-nd/4.0/)
rawn from such an interconnected world, the dangers en-
ompassed by recent technological advancements must be
ecognized. Larger and more complex networks generally en-
ail the emergence of threats and novel attack vectors. Not
ust the amount of potential entry points becomes larger in a
zenberger@ait.ac.at (M. Wurzenberger), florian.skopik@ait.ac.at (F.
en.ac.at (P. Filzmoser).

n access article under the CC BY-NC-ND license.

https://doi.org/10.1016/j.cose.2018.08.009
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.08.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:max.landauer@ait.ac.at
mailto:markus.Wurzenberger@ait.ac.at
mailto:florian.skopik@ait.ac.at
mailto:giuseppe.settanni@ait.ac.at
mailto:peter.filzmoser@tuwien.ac.at
https://doi.org/10.1016/j.cose.2018.08.009
http://creativecommons.org/licenses/by-nc-nd/4.0/

c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6 95

growing network, there is also a substantial increase of the
attack surface when more complex technologies are present.
This allows attackers to infiltrate the system in more diverse
and previously unimaginable ways. In order to counteract
such intrusions, Cyber Security employs Intrusion Detection
Systems (IDS) that are able to differentiate between benign
and malicious system processes and raise alerts whenever a
prohibited action is executed. However, traditional IDS do so
by comparing the current state of the system with known sig-
natures. While the involved methods are usually very efficient,
they fail to detect previously unknown attacks due to the fact
that no corresponding entry exists in their ruleset. There is
therefore a need for more flexible methods that do not rely on
predefined rules derived from expert knowledge, but rather
detect suspicious events occurring in large-scale ICT systems
on their own.

IDS that perform such an unsupervised analysis are known
as Anomaly Detection Systems and are frequently used for
monitoring system logs. The advantage of log files is that they
keep track of every single event that is carried out, including
artifacts of attacks. An Anomaly Detection System that is able
to process the log lines at least at the same rate as they appear
is therefore able to detect attacks in real-time.

Due to the fact that logs are designed to be human-
readable, they often contain text messages and also give
information about parameters and other values related to the
currently running processes. There are uncountable different
ways how log files are structured in practice and the contents
of most real-world log files exhibit highly different features
as they depend on the type of application, configurations
defining what type of messages are logged (e.g., informative
messages, errors or debug output), the verbosity of the log
lines, what kind of components are placed in the system
and in which way they are writing their messages to the log
file. Moreover, logs from many different sources are often
assembled into single files or streams. For example, the syslog
protocol only imposes minimal restrictions regarding the log
contents when aggregating messages from different services.

This kind of content diversity apparent in many existing
applications renders an automated analysis difficult and thus
requires methods that provide a more flexible way of extract-
ing relevant data out of the logs.

Several existing approaches do so by employing unsuper-
vised or semi-supervised text clustering approaches that op-
erate independent from the structure of the log file at hand.
These methods group similar log lines into a collection of clus-
ters, i.e., a cluster map. However, the cluster maps resulting
from these algorithms usually only give a static view of the
data. In general, locating outliers in these maps or single lines
that contain significant words like “error” is not adequate for
a thorough analysis of the system and neither is the pres-
ence or absence of certain lines sufficient to indicate prob-
lems, but rather the dynamic relationships and correlations
between lines have to be considered (Xu et al., 2009).

Note that this kind of clustering is different to cluster-
ing log traces, i.e., ordered sequences of log lines, that is
frequently pursued in existing literature on process mining.
While the extraction of log traces requires some kind of pro-
cess ID that refers to the task that generated the log messages,
clustering individual log lines does not rely on any assump-
tions about the data. In this article, we therefore refer to static
cluster maps as a collection of individual log lines rather than
log sequences.

Another challenge with such static cluster maps is that
they cannot be used as permanent templates for a computer
system. This is due to the fact that any system generating log
lines is constantly subject to changes and therefore cluster
maps generated during separate time windows often turn out
to consist of highly different structures. It is therefore neces-
sary to incorporate dynamic features that span over multiple
cluster maps.

This task is known as cluster evolution analysis. Fig. 1
shows an example of three cluster maps generated during
three different time windows. In the first time window, the
cluster map consists only of a single cluster. This cluster con-
tains a set of log lines displayed as points and is defined by
a representative, i.e., a specific element marked by a star that
represents the contents of the cluster. In the second time win-
dow, two clusters exist, but only one of them is a descendant
of the cluster from the first time window. This relationship
between the clusters is marked by the arrow pointing from
the original to the resulting cluster. In the third time window,
three clusters exist, but two of them originate from a single
cluster, thereby forming a split.

Cluster evolution aims at an analytical and automatic iden-
tification of such transitions between clusters. However, ex-
isting cluster evolution techniques rely on the principle that
the same elements are observed and clustered over time. Log
lines on the other hand are non-recurring objects, i.e., a log
line occurs exactly at one single point in time and that same
line is never observed again. This means that it is not possi-
ble to simply match log lines with each other without previ-
ous work, such as identifying and omitting time stamps, IDs
and variable artifacts in the strings. We already mentioned
that despite the fact that clustering will by definition group
similar log lines into clusters, the structure and message con-
tent of lines within clusters do not necessarily have to be
homogeneous. Even more so, log lines within clusters from
different time windows may have structurally changed due
to system events or modifications, for example, software up-
dates that change the syntaxes of the logged messages. While
fuzzy string matching algorithms exist that alleviate these is-
sues, their extensive computational complexity in combina-
tion with the immense amount of log lines distributed in nu-
merous clusters makes it non-trivial to determine the transi-
tions between clusters.

Anomaly detection always relies on some kind of metric
that determines whether a specific instance such as a log line,
group of log lines or point in time is anomalous or not. Pre-
defined limits are frequently used to trigger alarms for these
metrics, however are not always an appropriate solution in an
unsupervised setting. This is due to the fact that different sys-
tems usually show highly different behavior and also the be-
havior of a single system changes over time. A self-learning
procedure should therefore be able to dynamically adjust to
any environment it is placed into and adapt the limits for trig-
gering alarms on its own.

Finally, an anomaly detection system that deals with all
the previously mentioned issues must also exhibit a rea-
sonable computational complexity regarding runtime and

96 c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

Fig. 1 – Example of cluster evolutions spanning over 3 time windows.

m
d
n
a
m
t
t

t

t
p
o
e
t
r
t
a
k
l
a
m
s

p
w
r
o
p

w

m
c
a
o
d

S
a
q
d

S
i
b
t
u
S
w
c
f

2

T
e
o
a
t
d
a
u
o

a

C
r
v
t

(
a
p
d
a

emory consumption. Due to the fact that online anomaly
etection is supposed to take place in real-time, the algorithm

eeds to be efficient enough to process log lines at least as fast
s they appear. Furthermore, it must be ensured that the used

ethods are suited for the processing of streams, i.e., the run-
ime should scale linearly with the number of log lines and

here must be a limit to the required memory.
The approach proposed in this article solves the aforemen-

ioned issues by encompassing the following contributions:

1. A clustering model that is able to connect log line clusters
from a sequence of static cluster maps and thereby sup-
ports the detection of transitions between these clusters,

2. the definition of metrics that are derived from aforemen-
tioned transitions between clusters,

3. an online anomaly detection approach that displays the
security-relevant metrics as time-series and employs fore-
casting models in order to detect deviations from expected

behavior,
4. an evaluation of the introduced methodology by deploying

the prototype in a realistic scenario.

The main feature of the introduced approach is that con-
extual anomalies, i.e., log line types that do not cohere to
reviously gained knowledge about their average frequency
f occurrence, periodicity and correlation, are detected. This
xtends the ability of static clustering approaches that de-
ect highly dissimilar lines which occur only once as outliers
ather than temporal anomalies which are observed as sys-
em behavior changes over time. Moreover, the introduced

pproach is self-learning and does not require any previous
nowledge about attacks or the structure and content of the

og data. This allows the handling of complex log lines from

ny number of processes and components in arbitrarily for-
ats and appearances following different standards or no

tandards at all.
This article is a massive extension of our approach pro-

osed in Landauer et al. (2018) . In general, for this article
e largely increase the level of detail of our work by elabo-

ating on the proposed concepts more precisely. We thereby
utline new ideas of approaching cluster evolution, e.g., by
roposing a sophisticated multi-window model. Furthermore,
e include additional evolution metrics and go into algorith-
ic details. We largely extend the evaluation to comprise dis-
ussions about parametric influences and types of detected

nomalies. Finally, in this article we also apply our algorithm

n real log data in addition to semi-synthetically generated

ata.
The remainder of this paper is organized as follows:

ection 2 surveys existing approaches for anomaly detection

nd cluster evolution. For a better understanding of subse-
uently introduced concepts, Section 3 illustrates the proce-
ure of the proposed method with the aid of an example.
ection 4 then goes into detail about the incremental cluster-

ng algorithm. Section 5 extends on the clustering algorithm

y introducing a clustering model that supports cluster evolu-
ion techniques. Metrics derived from the evolutions are then

sed for anomaly detection using time-series prediction in

ection 6 . The theoretically discussed models are then applied

ithin a realistic scenario in Section 7 . Finally, Section 8 con-
ludes the paper and further states suggestions and ideas for
uture research in this topic.

. Related work

he high risk posed by cyber threats has led to a massive inter-
st in securing computer systems. Accordingly, a vast amount
f research in the field of cyber security has been carried out
nd there exist numerous works focusing on anomaly detec-
ion. Many approaches employ unsupervised algorithms that
ue to the fact that they do not require previous knowledge
bout the data and implicitly assume that outliers only make
p a small part of the input data. These are clear advantages
ver supervised methods that require labeled data sets, i.e.,
 log file with annotated lines that is used as a training set.
reating such labeled log files usually involves the time- and

esource-consuming manual work of experts and only pro-
ides little benefit regarding the detection of unknown at-
acks.

Independent of the learning method, Chandola et al.
2009) differentiate between three types of anomalies: (i) point
nomalies, i.e., outliers that are dissimilar to all other data
oints, (ii) contextual anomalies, where the context could be
efined by a current system state or time, and (iii) collective
nomalies, i.e., anomalous groups of data points. For detecting

c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6 97

point anomalies in log files it is usually not necessary to take
dynamic features of the data, such as temporal correlations,
chronological orderings and occurrence frequencies, into ac-
count. The log data may be represented in high-dimensional
spaces, where outliers are detected using dimension reduc-
tion techniques Juvonen et al. (2015) . Other approaches fre-
quently apply probability theory Kruegel and Vigna (2003) and
Bayes Statistics Amor et al. (2004) in combination with cluster-
ing techniques Yassin et al. (2013) in order to analyze network
traffic for outliers. Such clustering methods are also employed
for the creation of event signatures or templates that are then
used to group log lines and thereby identify outliers. For exam-
ple, the algorithm SLCT introduced by Vaarandi (2003) gener-
ates patterns by observing frequent words and their respective
positions in each line.

In order to employ such log line templates for dynamic
anomaly detection, He et al. (2016) make use of an event count
matrix and determine whether there are deviations from the
normal amount of occurrences of certain log line types. Such
message counts were also used by Xu et al. (2009) who used
static source code analysis for the generation of log templates.
Fu et al. (2009) also used log patterns in combination with a Fi-
nite State Automaton and considered transit times and circu-
lation numbers as measures to detect anomalous system be-
havior. In order to circumvent the necessity of log templates,
Andreasson and Geijer (2015) considered string metrics and
n-gram matching for clustering. Finally, incremental cluster
methods are able to dynamically add any number of incom-
ing data points by either allocating them to one of the exist-
ing clusters or declaring them as outliers if the distance to
the nearest cluster exceeds a certain threshold. Such an incre-
mental approach has been applied for log file anomaly detec-
tion on systems with a highly predictable behavior and a large
number of repeating sequences (Wurzenberger et al., 2017).

A different but increasingly popular method for learning
patterns in data is posed by neural networks. Multilayer per-
ceptrons and time-series analysis methods are used by Hill
and Minsker (2010) and Cortez et al. (2012) . Long Short Term
Memory Recurrent Neural Networks are further able to detect
temporal dependencies in event logs (Goh et al., 2017). Also
Restricted Boltzmann Machines have been used for anomaly
detection in network data (Fiore et al., 2013).

A large amount of research focuses on time series analysis
for clustering (Esling and Agon, 2012; Khalilian and Mustapha,
2010; Silva et al., 2013) and anomaly detection (Chin et al.,
2005; Gupta et al., 2014; Pincombe, 2005; Sperotto et al., 2008;
Thottan and Ji, 2003) in network traffic data. Cluster evolu-
tion techniques thereby pose a feasible alternative for moni-
toring the developments of log clusters over time.Spiliopoulou
et al. (2006) propose an algorithm for the identification of
transitions between clusters necessary for such a reasoning.
Smoothing the identified transitions has shown to be advan-
tageous as anomalies may negatively influence the quality
of detected cluster evolutions Chi et al. (2009) . Moreover, the
structures of previously generated cluster maps should be
taken into account when clustering in order to ensure that
their differences are minimized (Chakrabarti et al., 2006).

Not only the internal compositions of clusters, but also
their relationships to each other as well as their correlations
are of relevance for anomaly detection. This also includes the
relative position and movements of the clusters (Carmi et al.,
2009), which is a problem also found in GPS tracking (Jensen
et al., 2007). Toyoda and Kitsuregawa (2003) specify several ad-
ditional internal and external cluster metrics related to cluster
evolution analysis. These cluster properties may also be mea-
sured using sliding window approaches (Zhou et al., 2008).

When artifacts related to network connections such as
IP addresses can be derived from log lines, cluster evolution
enables anomaly detection on graphs (Asur et al., 2009; Bil-
gin and Yener, 2006; Bródka et al., 2013; Chan et al., 2008;
Falkowski et al., 2006; Lee et al., 2014). However, log lines are
non-recurrent entities, i.e., a specific log line only occurs at
one point in time and cannot simply be related to any other
line occurring afterwards. Thus, existing graph-based clus-
ter evolution techniques cannot be applied on raw log data.
Moreover, most cluster techniques do not support dynamic
changes that are caused when inserting new data points to an
existing cluster map, but rather require a complete reforma-
tion of all clusters. The approach proposed in this work there-
fore tries to solve these issues by connecting clusters of log
lines that were generated within subsequent time windows.

Overall, the anomaly detection methodology proposed in
this article differs from all mentioned works regarding several
aspects. First, it is an approach for dynamic and contextual
anomaly detection rather than the detection of point anoma-
lies. Second, our clustering approach does not rely on source
code analysis, neural networks, or log templates for pattern
matching, but employs flexible string distance metrics that
operate on characters rather than words. Third, our approach
makes use of cluster evolution in order to process log data in
a streaming manner rather than being limited to fixed-size
data sets. Finally, while many existing solutions are not adap-
tive to system modifications, our approach incorporates these
changes in its anomaly detection procedure. Given these fea-
tures, we argue that our proposed approach is a valuable con-
tribution to the current state of the art.

3. Concept

In this section, an illustrative example is discussed in order to
explain the difficulties of performing cluster evolution on raw
log data, motivate the advantages of dynamic log file analy-
sis and outline the proposed concept that will be explained
in more detail in the following sections. Fig. 2 shows this ex-
ample. In the bottom part marked with 1, several log lines are
displayed with preceding time stamps. At this point the lines
have no relation to each other, the colors and marks were only
added for a better visualization of the groupings that will be
determined in the clustering step. In the example, three pro-
cesses � , � and � produce specific types of log lines, i.e., pro-
cess � logs user file accesses that appear in random intervals,
process � logs an automated backup procedure that generates
lines in regular intervals and � logs failed login attempts. In
step 2, the occurrences of the lines are displayed on a time
axis, where t 0 , t 1 , t 2 , t 3 represent the boundaries of the time
windows of each cluster map. Step 3 then clusters the lines
according to a given clustering algorithm and string similar-
ity metric. This results in the three cluster maps C , C ′ , C ′′ from
three different time windows. As it can be seen, while in the

98 c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

Fig. 2 – (1) Log file. (2) Log events occurring within time windows. (3) Static cluster maps for every time window. (4)
Schematic clusters undergoing transitions.

fi
m
c
d
p
d
t
o
b
c
i
c
o
a

o
c
t
t
a

t
w
t
h
e
t
l
d
c
t
t
l

(
c
t

fl
d

f

t
c
c
l
o

m
a
i

t

A
n
t
o
b
f
t
o

u
a
o
t
m
d
t
a
fi
t
c
b
t
l
a

rst two time windows only 3 clusters were found, the cluster
ap of the final time window consists of 4 clusters. Without

luster evolution it would be hardly possible at this point to
etermine how the formation of those 4 clusters was accom-
lished or how any of the clusters from different time win-
ows relate to each other. However, the graphical display of
he result of a cluster evolution marked with 4 in the top part
f the figure gives several useful insights: Not only is it possi-
le to track the clusters over all time steps, it can be seen that
luster C �

splits up in the last time step. Moreover, cluster C �

ncreases its distance to the other clusters in C ′ and further be-
omes more diffuse in C ′′ which is represented by the diameter
f the circle. Finally, it can be seen that C �, which represented

n outlier in C and C ′ , i.e., the line could not be allocated to any
ther group of messages and thus remained alone in its own

luster, increased its size in C ′′ . All of these effects are indica-
ors for abnormal behavior, for example, the increase of lines
hat lie inside the ’login failed’ cluster may be caused by an

ttempt to break into a user account by a brute force attack.
It can therefore be concluded that not only single log lines

hat do not match any of the existing clusters are of relevance
hen searching for abnormal system behavior, but also that

he properties of the clusters themselves viewed over time
ave to be considered as indicators for anomalies. It is how-
ver not trivial to derive any insights from clusters of separate
ime windows since they are generated by different sets of log
ines. Accordingly, anomalies regarding the temporal depen-
encies such as log line frequencies, periodical behaviors or
orrelations cannot be detected. We therefore propose a solu-
ion to this problem by linking clusters throughout multiple
ime windows in order to generate time-series from their evo-
utions.

Our approach that was first published in Landauer et al.
2018) consists of several steps that involve techniques from

lustering, cluster evolution and time-series analysis. A de-
ailed overview about the steps of the algorithm is given by the
owchart in Fig. 3 . Steps (1)-(4) describe the clustering proce-
ure that is discussed in detail in Section 4 . The log lines read
rom the log file or stream in step (1) are one after the other
ransferred to the preprocessing stage in step (2). There, spe-
ial characters may receive specific treatment in order to fa-
ilitate clustering, but the overall structure and content of the
og lines remains the same. For example, characters outside
f the range 32 − 126 from the ASCII table may be removed,
ultiple consecutive spaces may be reduced to a single space

nd time stamps may be extracted. The cluster map is then

teratively build in step (3) by adding each log line to one of
he existing clusters or generating a new cluster if necessary.
fter the clustering procedure has been carried out within a
umber of time windows, an ordered sequence of static clus-
er maps is established. As already mentioned, each log line
nly occurs in one specific time window and can therefore not
e related to a cluster from a different time window. We there-
ore introduce an allocation phase in step (4) that establishes
his connection by allocating the log lines in the cluster maps
f the preceding and succeeding time windows.

After the completion of each time window, step (5) makes
se of the log line allocations resulting from the previous step

nd determines which cluster from the current cluster map

riginates from which other cluster from the preceding clus-
er map. In addition, advanced transitions such as splits or

erges between clusters are detected and appropriately han-
led. The procedure of allocating log lines to neighboring clus-
er maps and the identification of transitions between clusters
re explained thoroughly in Section 5 . Based on the identi-
ed transitions, evolution metrics that measure the state of
he cluster map and indicate changes of specific clusters are
omputed in step (6). For example, an evolution metric could

e used to determine how many log lines were allocated to
his cluster or whether a cluster is stable, i.e., whether the log
ines allocated to this cluster in one time window were also
llocated to the same cluster in another time window. In step

c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6 99

Fig. 3 – Flowchart of the anomaly detection procedure. Steps
(1)–(4) involve clustering, steps (5) and (6) involve cluster
evolution and steps (7)–(9) involve time-series analysis.

(7), these cluster metrics that conveniently form time-series
are approximated with appropriate models that take trends
and seasonal effects into account. An extrapolation of these
models is used to produce a one-step ahead forecast for the
metric in the subsequent time window. Step (8) then uses the
prediction computed in the preceding time window and de-
tects an anomaly if this value deviates too much from the ac-
tual measured metric. Thereby it is guaranteed that changes of
the system behavior are recognized as fast as possible, while
the algorithm is at the same time able to incorporate these
changes already in the following prediction. This ensures ad-
justing to any new state is possible without any need for man-
ual reconfiguration. Finally, step (9) monitors the correlations
between the time-series corresponding to the cluster devel-
opments. Similar to before, unexpected changes of these cor-
relations indicate that there has been a change of the system
behavior. For efficiency, we suggest to group the time-series in
a similar way as explained in Section 4 , i.e., groups of corre-
lating time-series are incrementally built in every time step.
These groups are monitored over time and any evolving clus-
ter that leaves, swaps or joins one of the correlating groups is
considered anomalous.

4. Clustering

This section describes the algorithm for generating the static
cluster maps within each time window by incrementally
adding log lines (Wurzenberger et al., 2017). This algorithm
was selected for several reasons. First, it is designed to pro-
cess data with high performance and thus able to handle large
log files. Second, the incremental approach allows processing
data that arrives in streams rather than a fixed size data set,
which is an essential property for online data monitoring. Fi-
nally, there are no restrictions or assumptions regarding the
syntax on the input log data due to the fact that string met-
rics are employed rather than parsers or templates.

These features are enabled by defining each cluster C
through a single cluster representative c . This representative
is set as the log line that triggered the generation of the clus-
ter and is thus its first member. Furthermore, all clusters are
placed in a cluster map C.

The procedure of the algorithm is as follows: The log lines
are read line by line from a log file or a log stream. The strings
are then preprocessed in order to avoid that certain artifacts
have a negative influence on the quality of the clustering.
This includes reducing multiple consecutive spaces, removing
the timestamp attached to each log line and replacing non-
displayable characters. The first log line that is being read al-
ways forms a new cluster with itself as the representative as
there is no other cluster that this line could be allocated to. For
every other line l that follows, a series of checks is carried out.
At first, each representative c of all clusters C ∈ C is compared
for equality with l . In the case that an identical representa-
tive is found, the currently processed log line is immediately
allocated to the corresponding cluster and the next line is pro-
cessed. Otherwise, a set of cluster candidates C l ⊆ C is selected
based on the lengths of c and l . A cluster C is added to C l if | c | lies
within a predefined range of | l |, e.g., ± 10%. We argue that this
is an efficient method to exclude dissimilar cluster candidates
from further comparisons that are computationally more ex-
pensive.

The resulting set of cluster candidates is thinned out us-
ing a short word filter that compares the amount of k -mers
in c ∈ C l and l . Such filters have frequently been applied for
clustering biological sequences. The minimum amount M of
matching k -mers that is required for C to remain in C l is com-
puted by

M = L − k + 1 − (1 − p) kL (1)

where L is the length of the shorter line, k is the length of the
k -mers and p is the similarity threshold selected within the
range [0, 1]. This stage again aims at an efficient reduction of
the set of cluster candidates.

Finally, the most similar of the remaining cluster candi-
dates C l is determined using a string metric, e.g., the well-
known Levenshtein distance. For this, the cluster C ∈ C l that
minimizes the distance d (c, l) between its representative c and

100 c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

t
t
fi
l
a

t
s

5

A
p
t
m
t
t
i
c
e
w
i
u

c
b
d

5

C
o

s
t
c
a

t
l
c
l
i
o
c
m
c
m
t

o

T
p
m
s
f
(
h
i
F
fi
e

v
o
e

l
f
m
t

a
n
a
t
t
c
t

o

a

e
i
d
i
t

t
d
t
t
t
a
c
a
a
e

F
p
d

W
f
o
m

W
u
t

i
t

1

T
a

f
a
t
R
{
w

A
r
s

m

he currently processed line l is selected. If this distance to
he most similar representative c is not larger than a prede-
ned threshold t , then l is allocated to C . Otherwise, the log

ine forms a new cluster with itself as the representative. In

ddition to clustering log lines within distinct time windows,
his algorithm is used for establishing connections between

eparate cluster maps in the next section.

. Cluster evolution

n algorithm for clustering log lines was introduced in the
revious section. This algorithm is able to operate on a con-
inuous data stream without any fixed end, i.e, the cluster

ap keeps expanding. While several static features can be ex-
racted from that procedure, for example, the log line types
hat are responsible for the largest clusters or outliers that
ndicate unusual log lines, most features about the dynamic
luster developments are lost. This issue is solved by gen-
rating several smaller cluster maps within delimited time
indows rather than one single large map that keeps grow-

ng. However, retrieving dynamic information about individ-
al clusters of multiple time windows is not trivial. Therefore,
luster evolution that aims at the identification of connections
etween clusters is applied in order to learn about the cluster
evelopments.

.1. Cluster tracking

luster tracking analyzes how each of the clusters C ∈ C from

ne time window relate to each of the clusters C

′ ∈ C ′ from the
ucceeding time window in order to establish connections be-
ween similar clusters from the respective maps. Thereby, two
lusters C and C

′ should be considered similar if their gener-
tion was triggered by the same underlying data source, i.e.,
heir contained log lines are similar. However, comparing each

og line from one cluster with each other log line from another
luster is computationally expensive and not feasible for large
og files. We therefore reformulate the premise in the follow-
ng way: Two clusters are considered similar if the majority
f the elements contained in C

′ would have been allocated to
luster C if they had been used for the generation of cluster
ap C. Similar problems have been solved using the Jaccard

oefficient for binary sets which measures the ratio of com-
on data points in order to determine the overlap between

wo clusters:

verlap(C, C

′) =

∣∣C ∩ C

′ ∣∣
| C ∪ C

′ | (2)

his measure has been used by Greene et al. (2010) who com-
are the overlap with a threshold θ ∈ [0, 1] in order to deter-
ine whether the clusters match, i.e., whether it can be as-

umed that C

′ originates from C . There exist also alternate
orms for computing the overlap which use the maximum

 Takaffoli et al., 2011) or the minimum (Greene and Cunning-
am, 2009) of the two set sizes in the denominator and there

s also the possibility to use the Hungarian Method, the Max-
low approach or a linear programming algorithm in order to
nd the optimal correspondences between clusters of differ-
nt time steps (Goldberg et al., 2010). In addition, there are
ariants for determining whether a transition occurred based

n measuring the percentage of change for each cluster (Asur
t al., 2009).

It is however problematic to make use of this measure in

og file analysis as log lines allocated to two clusters in dif-
erent time windows cannot be regarded as identical, which

akes it difficult to reasonably perform set operations such as
he union and intersection. This is due to the fact that log lines
re just strings that can only reliably be tracked by their line
umber and equality (i.e., an identical sequence of characters)
nd continuously changing IDs or timestamps contained in

he lines could easily cause that otherwise similar lines from

he sets C and C

′ are not matched due to a single diverging
haracter. The result of this would be that the intersection of
he two sets is incorrectly sparse or even empty due to the lack
f identical strings.

In order to overcome these problems regarding set oper-
tions on log lines, the following strategy was pursued: First,
ach log line is only referenced by its unique line number once
t is allocated to a cluster. This does not only effectively re-
uce the amount of required memory, but also ensures that

dentical lines can be differentiated and mathematical restric-
ions regarding identical members in sets are fulfilled. Second,
he key aspect of this procedure is that the log lines occurring
uring a certain time window are not only used for creating
he cluster map of that time step, but are also allocated to
he clusters from the cluster maps preceding and succeeding
hat map. The two phases are called construction phase and

llocation phase respectively. In the construction phase, the
luster maps are generated solely by the log lines that actu-
lly occur within that time window. On the other hand, the
llocation phase allocates log lines from cluster maps that lie
ither before or ahead of the currently processed cluster map.
or clarification, it should be noted that during the allocation

hase the lines do not change the existing clusters and also
o not induce the generation of new clusters in these maps.
hile a line that does not fall into any existing cluster would

orm a new one during the construction phase, it is simply
mitted if it does not fit into any existing cluster of another
ap.
An illustrative example of this procedure is shown in Fig. 4 .

e point out that the colorings in this illustration are only
sed for an easier differentiation between the clusters and

heir members and that at the start of the tracking procedure,
t is not known that cluster C

′
�

originates from cluster C �

and

hat cluster C

′
�

originates from C �

. In this simple example,
1 log lines occurring over two time windows are considered.
he log lines { s 1 , s 2 , . . . , s 5 } occur during the first time window

nd form two clusters C �

, C �

∈ C. As these are the lines used
or the creation of the cluster map in this time window, they
re seen as the current members of the respective clusters
hey belong to. Hence, they are stored in the sets of references
 � curr = { s 1 , s 2 , s 3 } and R � curr = { s 4 , s 5 } . Analogously, log lines
 s 6 , s 7 . . . s 11 } form the clusters C

′
�

, C

′
�

∈ C ′ in the second time
indow and thus R

′
� curr = { s 6 , s 7 , s 8 , s 9 } and R

′
� curr = { s 10 , s 11 } .

t this point, the cluster maps are generated and the required

eferences to the generating lines are stored. Thus, the con-
truction phase is finished.

As previously explained, once the two consecutive cluster
appings are established, the allocation phase clusters the

c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6 101

Fig. 4 – Illustrative example how lines are allocated to two different clusters from two consecutive time steps.

lines from each time window into the maps from neighbor-
ing time steps. First considering the lines { s 1 , s 2 . . . s 5 } fr om
the former time window being clustered into the map C ′ of
the later time step, it can be seen that the allocations lead to
the sets of references R

′
� prev = { s 1 , s 2 } and R

′
� prev = { s 3 , s 4 }

stored in the clusters. Analogously, the lines from the later
time window were allocated to the clusters from the former
time step resulting in the references R � next = { s 6 , s 7 , s 8 } and
R � next = { s 10 , s 11 } . It should be noted that line s 3 was clus-
tered into C �

in the former time step but into C

′
�

in the later
time step. A reason for this could be that s 3 has the neces-
sary characteristics to fit into both of the clusters, but due to
small deviations in cluster representatives in both time steps
the line was not allocated into cluster C

′
�

unlike the lines s 1
and s 2 . This could also be the reason why both s 5 and s 9 were
not allocated to any cluster from the neighboring maps.

Furthermore, it should be clear that there is an arbitrar-
ily large number of time steps following and that lines have
to be clustered accordingly. For example, assuming that there
would be a third time step with a cluster map C ′′ and its clus-
ters C

′′
�

and C

′′
�

, their line allocations would be stored in the
references R

′′
� curr and R

′′
� curr . Also, the lines of the second time

window would additionally have to be clustered in C ′′ forming
R

′′
� prev and R

′′
� prev . These connections are not displayed in the

figure for simplicity. Finally, the lines of the third time window
have to be clustered in C ′ forming R

′
� next and R

′
� next . At the end

of the allocation phase, references to all the lines from neigh-
boring time windows are stored in each cluster map.

overlap(C

1 , C

2 . . . C

N)

=

∑ N−1
j=1

∑ N− j
i =1

∣∣∣(R

i
curr ∩ R

i + j
prev, j

)
∪

(
R

i
next, j ∩ R

i + j
curr

)∣∣∣∑ N−1
j=1

∑ N− j
i =1

∣∣∣R

i + j
curr ∪ R

i + j
prev, j ∪ R

i
next, j ∪ R

i
curr

∣∣∣ (3)

Using this kind of cluster allocations, the rule for finding
matches between clusters stated in Eq. (2) is adapted to fit the
purpose of log line clustering. Using the line references as ex-
plained before, the following formula computes the overlap
between any two clusters C and C

′ of two neighboring maps:

overlap(C, C

′) =

∣∣∣(R

′
curr ∪ R

′
prev

)
∩ (R next ∪ R curr)

∣∣∣∣∣∣R

′
curr ∪ R

′
prev ∪ R next ∪ R curr

∣∣∣ (4)
Since R

′
curr ∩ R next = ∅ and R

′
prev ∩ R next = ∅ , this is equivalent to

overlap(C, C

′) =

∣∣∣(R curr ∩ R

′
prev

)
∪ (R next ∩ R

′
curr)

∣∣∣∣∣∣R

′
curr ∪ R

′
prev ∪ R next ∪ R curr

∣∣∣ (5)

This representation also shows more clearly that the sets R curr

and R

′
prev both contain log lines that were used in the former

time step which was also used to create the cluster map C,

while both R next and R

′
curr contain log lines from cluster map

C ′ , thus showing that the intersections are applied reasonably.
Dividing the union of these two intersected sets by the union
of all sets means that the resulting value is in the interval [0,
1], with 1 indicating a perfect match (i.e., all lines that were
clustered into C were also clustered into C

′ and vice versa) and
0 indicating a total mismatch.

Using this formula, the overlaps between clusters of the
example from Fig. 4 can be computed. For example, the overlap
between clusters C �

and C

′
�

is

overlap(C �

, C

′
�

) =

| { s 1 , s 2 , s 6 , s 7 , s 8 } |
| { s 1 , s 2 , s 3 , s 6 , s 7 , s 8 , s 9 } |

≈ 0 . 714 (6)

A more sophisticated clustering model that not only allo-
cates the log lines from a certain time window into the clus-
ter maps of its directly neighboring time windows but also
into the ones following after that is able to compute an aggre-
gated overlap over multiple time windows. This means that
the overlap from a specific cluster, say C

1 ∈ C 1 , through an-
other cluster C

2 ∈ C 2 to a third cluster C

3 ∈ C 3 is computed by
not only incorporating the already used references R

1
next and

R

2
prev between C

1 and C

2 as well as R

2
next and R

3
prev between C

2

and C

3 , but also the references between C

1 and C

3 . These ref-
erences are called R

1
next, 2 and R

3
prev, 2 , where the additional sub-

script 2 indicates the distance between the two cluster maps,
i.e., cluster map C 2 was skipped. Following this terminology,
the references between two directly neighboring cluster maps
are called R

1
next, 1 , R

2
prev, 1 , etc. Analogously, the references be-

tween clusters C

i and C

i + m that are m steps apart are called
R

i
next,m

and R

i + m

prev,m

. The overlap between a sequence of N clus-
ters C

1 , C

2 . . . C

N is computed as follows: Eq. (3) . For simplicity,
the simple overlap metric is used in the remainder of this pa-
per and the additional index specifying the distance between
the cluster maps is omitted.

102 c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

o
m
c
fi

5

T
fi
a
l
o
t
s
p
n
f
t
f
b
i
s
d
t
f
i
s
f

s
e
c
h
t
a
c

Algorithm 1: Determining external cluster transitions
between two time steps.

Data : cluster maps C , C ′
Result: list of transitions between pairs of clusters

1 transitions = List();
2 predecessorsCandidates = [List()];
3 predecessorsOverlaps = [];
4 for C ∈ C do
5 successorsCandidates = List();
6 successorsOverlap = 0.0;
7 for C

′ ∈ C ′ do
8 overlap = computeOverlap(C , C

′);
9 if overlap > θpart then

10 successorsCandidates += C

′ ;
11 successorsOverlap += overlap;
12 predecessorsCandidates[C

′] += C;
13 predecessorsOverlaps[C

′] += overlap;

14 end

15 end

16 if successorsOverlap > θ then

17 transitions += { C, successorsCandidates};
18 end

19 end

20 for C

′ ∈ C ′ do
21 if predecessorsOverlaps[C

′] > θ then

22 transitions += {predecessorsCandidates[C

′], C

′ };
23 end

24 end

s
f
t
e
t

I
l
f
t
c
a
c

a
p

However, clusters do not necessarily have to have exactly
ne predecessor and one successor, but can be the product of
ultiple clusters that merged together or be a part of a larger

luster that split up. In the following, a method for the identi-
cation of such transformations is given.

.2. Cluster transitions

he overlap metric proposed in the previous section only suf-
ciently tracks clusters in simple settings where all clusters
re very different from each other, thus yielding high over-
aps only with one other cluster. However, the compositions
f clusters are frequently subject to change and similar clus-
ers generated in the same time windows may be the result of
plits or may result in a merge. Spiliopoulou et al. (2006) pro-
ose rules for detecting such advanced transitions using a
on-symmetric overlap measure. However, our overlap metric

rom Eq. (4) is symmetric due to the fact that it considers clus-
ers from the preceding as well as the succeeding cluster map

or the calculation. This causes that the sum of all overlaps
etween a specific cluster and all clusters from the preced-

ng time window as well as the sum of all overlaps between a
pecific cluster and all clusters from the succeeding time win-
ow never exceeds 1. In the following, we use θ as a minimum

hreshold for the overlap and θpart as a minimum threshold

or partial overlaps occurring during splits or merges, where
n general θpart < θ since partial overlaps yield smaller overlap

cores. We adjusted the rules to fit our overlap metric and dif-
erentiate between the following transitions:

1. Survival : A cluster C survives and transforms into C

′ if over-
lap (C, C

′) > θ and there exists no other cluster C i ∈ C or C

′
i ∈ C ′

so that overlap (C i , C

′) > θpart or overlap(C, C

′
i) > θpart .

2. Split : A cluster C splits into the parts C

′
1 , C

′
2 . . . C

′
p if all

individual parts share a minimum amount of similarity
with the original cluster, i.e., overlap(C, C

′
j) > θpart , ∀ j, and

the union of all parts matches the original cluster, i.e.,
overlap(C,

⋃

C

′
j) > θ . There must not exist any other clus-

ter that yields an overlap larger than θpart with any of the
clusters involved.

3. Absorption : The group of clusters C 1 , C 2 . . . C p merge into

cluster C

′ if all individual parts share a minimum amount
of similarity with the resulting cluster, i.e., overlap (C j ,
C

′) > θpart , ∀ j , and the union of all parts matches the result-
ing cluster, i.e., overlap(

⋃

C j , C

′) > θ . Again, there must not
exist any other cluster that yields an overlap larger than

θpart with any of the clusters involved.
4. Disappearance : A cluster C disappears if there exists no C

′
i ∈

C ′ so that overlap(C, C

′
i) > θpart .

5. Emergence : A cluster C

′ emerges if there exists no C i ∈ C so
that overlap (C i , C

′) > θpart .

The procedure for identifying such cluster transitions is
hown in pseudo-code in Algorithm 1 . Line 1 initializes the
mpty list of all transitions represented as pairs of clusters
onnected over two time steps. Line 2 initializes an array that
olds a list of all predecessor candidates referenced by a clus-

er from the later time step, i.e., C

′ . Line 3 initializes another
rray that holds the summed overlaps for those predecessor
andidates. Analogously, Lines 5–6 initialize those arrays for
uccessor candidates that are referenced by a cluster from the
ormer time step, i.e., C . If the overlap between any combina-
ion of clusters from different time steps computed in Line 8
xceeds θpart in Line 9, the arrays are updated with this po-
ential connection between the currently processed clusters.
n Line 16 it is checked whether the accumulated overlap is
arger than θ and only then the connection between a cluster
rom the former time window and all its successors is added

o the list of transitions. Analogously, Line 21 checks the ac-
umulated overlap between a cluster from the later time step

nd all its predecessors and updates the list of transitions ac-
ordingly.

In addition to these external transitions, any cluster may be
ffected by internal transitions regarding one of the following
roperties:

1. Size : The cluster grows in size if C

′ contains more data
points than C , shrinks if C

′ contains less data points than C
and does not change in size otherwise. The size of a cluster
C is denoted as | C |.

2. Compactness : With σ denoting the standard deviation of the
distance of the cluster members to the representative of
cluster C , the cluster becomes more compact if σ ′ < σ , be-
comes more diffuse if σ ′ > σ and does not change in com-
pactness otherwise.

3. Location : In general, cluster coordinates are used to deter-
mine whether a cluster changed its position. In our case
however, distances can only be computed relative to other
clusters rather than in absolute values.

c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6 103

split
4. Skewness : The skewness γ measures the asymmetry be-
tween the cluster members and the cluster representative.
The skewness of cluster C decreases if γ ′ < γ , increases if
γ ′ > γ and remains constant otherwise.

When tracking a cluster through multiple cluster maps, it
might be of interest to assign a continuous identifier to the
evolving cluster in order to easily retrieve the cluster prop-
erties from every time window. This identifier is required to
be robust to changes in cluster structure due to external and
internal transitions. While internal transitions pose less of
a problem as the cluster itself remains the same, especially
splits and merges make it difficult to allocate such an identi-
fier to the clusters as there should not exist more than one
cluster evolution with the same identifier. We suggest sev-
eral possibilities: First, larger cluster sizes may indicate more
important clusters, while smaller clusters often contain out-
liers. Therefore, new identifiers could be created for clusters
that have just emerged or for smaller clusters that separate
themselves from existing clusters, while their larger sibling
clusters obtain the identifier from their common predeces-
sor. Similarly, the cluster resulting from a merge will retain
the identifier from the largest of its predecessors. This makes
sure that most of the clusters holding high number of mem-
bers are tracked successfully, while smaller clusters do not in-
terfere with their developments. Another possibility is the fo-
cus on the amount of time windows that the preceding cluster
was already tracked, i.e., its time of existence. It is reasonable
to assume that clusters that have already been existing for a
longer amount of time are more stable and therefore a bet-
ter representation of the system. Furthermore, building upon
longer existing clusters results in longer time-series that are
better fitted for anomaly detection. Finally, the achieved over-
lap is another appropriate choice as a higher overlap suggests
that the most similar clusters are connected. This means that
clusters always retain the identifier from the predecessor with
the highest overlap and pass the identifier to the successor
with the highest overlap. Moreover, a weighted combination
of some or all of the previously mentioned metrics could be
used to determine the rules for tracking individual clusters.

5.3. Evolution metrics

It is possible to perform anomaly detection on simple clus-
ter features such as the size. However, the cluster size alone
does not always give a complete view about the ongoings
of the clusters. For example, a cluster that is the result of a
merge does not necessarily change in size, but the fact that
a transition is taking place may still be a sign of an anomaly.
On the other hand, omitting any information about the ad-
vanced transitions may hide that a change of size is caused
by a merge.

Therefore, measures that represent features of individual
clusters, combinations of clusters or the whole cluster map
are required. First, metrics that are computed from individ-
ual clusters and single time windows are considered. These
include the size of the cluster or the average distance and
variance of all cluster members to the cluster representative.
More sophisticated analyzes could be carried out regarding
the distribution of the members. Other metrics are based on
transitions, i.e., they measure the change of a tracked clus-
ter from one time window to another. Toyoda and Kitsure-
gawa (2003) state several examples of such metrics. However,
they observe the same elements over multiple time windows
which is not possible for non-recurrent log lines. Thus, the ad-
vantages of the proposed bidirectional clustering method are
utilized similar to the computation of the overlap metric. In
the following, we state a selection of metrics that take advan-
tage of our clustering model:

1. Growth rate : Measures the absolute difference between the
member sizes of two consecutive time steps. For a reason-
able interpretation of the value the time windows should
be of equal size.

ρgrow

=

∣∣R

′
curr

∣∣ − | R curr | (7)

2. Change rate : Measures the relative difference between the
cluster allocations of the lines from the former time step
with respect to the total number of lines that were pro-
cessed in the corresponding time window. Other than the
growth rate, this metric only takes lines from the former
time window into account but could also be computed for
the latter time window.

ρchange =

∣∣∣R

′
prev

∣∣∣ − | R curr | ∣∣∣∣∣ ⋃

C i ∈C
R curr

∣∣∣∣∣
(8)

3. Stability rate : Measures the fraction of appeared, disap-
peared, merged and split members between two consecu-
tive time steps. Note that 0 indicates that all log lines that
were allocated to this cluster in one time step were also al-
located to this cluster in the other time step and thus the
cluster is considered as stable, while 1 indicates that none
of the allocations coincided with the other time step and
thus the cluster is instable.

ρstab =

∣∣∣R

′
prev

∣∣∣ + | R curr | − 2 ·
∣∣∣R

′
prev ∩ R curr

∣∣∣∣∣∣R

′
prev

∣∣∣ + | R curr |
(9)

4. Novelty rate : Measures the fraction of newly appeared
members between two consecutive time steps. Different
than the growth rate, the novelty rate only considers log
lines that were allocated to C

′ but not C . The related disap-
pearance rate is computed by switching R

′
prev with R curr .

ρnovel t y =

∣∣∣R

′
prev \ R curr

∣∣∣∣∣∣R

′
prev

∣∣∣ (10)

5. Split rate : Measures the fraction of members that were split
from C between two consecutive time steps. The related
merge rate is computed by switching R

′
prev with R curr and

replacing C ′ with C.

ρ =

∣∣∣∣∣∣
⎛

⎝ R curr ∩

⋃

C ′ i ∈C ′
R

′
prev

⎞

⎠ \ R

′
prev

∣∣∣∣∣∣
(11)
| R curr |

104 c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

a
p
t
m
t
c
u
c
s

6

T
o
t
n
c
t
c
m

t
m

6

A
a
e
r
v
o
k
r
c
s

p
n
t
p
o
t

t
v
c
p
a
t
a

2

t
a
t
m
t
m

a

y

w
s
o

6

C
v
t
o
i
t
t
f

w

w
e
a
c
f

l

C

t
o

T

c
t
h
b
s
l
t
g
t
l

T
t
s

l
c
d
s
s

6

T
t

Except for the growth rate, switching R curr with R next and

lso R

′
prev with R

′
curr yields metrics based on the log lines ap-

earing in the latter time window. Moreover, the stated equa-
ions only take exactly two clusters into account. However, it

ay be desirable to treat a cluster that originates from mul-
iple clusters due to absorption or transforms into multiple
lusters due to splitting in a different way. For example, the
nion of the cluster fragments or the average of multiple rates
omputed for each individual cluster fragment could be con-
idered.

. Time-series analysis

he metrics mentioned in the previous Section are computed

nce for every time window. Due to the measurements in

hese regular intervals, time-series are generated that conve-
iently allow the application of time-series models. We de-
ided to employ the well-known ARIMA models as they take
rends and periodical effects into account and support fore-
asting. Moreover, it is easy to fit an autoregressive integrated

oving-average (ARIMA) model to any given time-series, e.g,
hrough a search over different model parameters that mini-

ize a predefined quality criterion.

.1. Forecasting

fter finding appropriate model parameters that reasonably
pproximate the time-series y 1 , y 2 . . . y N of length N , the prop-
rties of this model can be used to extrapolate over the last
ecorded time step and thus create a forecast for upcoming
alues (Cryer and Chan, 2008). This procedure is known as
ne-step-ahead prediction as it aims at approximating an un-
nown future value ˆ y t+1 that follows directly after the most
ecent point y t . There is also the possibility to apply this pro-
edure recursively in order to predict for longer horizons, but
ince we fit a new model in every time step there is no need to
roduce forecasts for longer time spans. Furthermore, it is not
ecessary to include all historic data in the prediction, since

he more recent values have more influence on the current
rediction. We therefore argue that only a predefined amount
f the most recent values should be kept in memory at any
ime.

In addition to the predictions, we require a measure for
he spread that states the trust in the forecasts. For random

ariables, this is usually solved with confidence intervals that
ontain the unobservable true parameters with a specified

robability. Contrary to that, prediction intervals are associ-
ted with an unknown random variable. The prediction in-
erval that is used in the following therefore contains the
ctual future value with the specified probability (Hyndman,
013).

Checking whether a future value lies within the predic-
ion interval is an effective method for detecting contextual
nomalies, i.e., data points that are anomalous with respect to
he most recent values. Using one-step ahead prediction, this

eans that the most recent measured value is compared with

he prediction interval generated one step before. In mathe-
atical terms, the currently processed value y t is identified as
n anomaly if

 t / ∈

[
ˆ y t − Z 1 − α

2
s e , ̂ y t + Z 1 − α

2
s e

]
(12)

here ˆ y t is the prediction, Z 1 − α
2

is the quantile 1 − α
2 of the

tandard normal distribution and s e is the standard deviation

f the error, s e =

√

1
n −1

∑

(y t − ȳ t) 2 .

.2. Correlation

orrelation is frequently used to measure the relatedness of
ariables that do not necessarily need to be in a causal rela-
ionship. In general, positive correlation means that a change
f one variable in a certain direction indicates that there

s also a change of a correlated variable in the same direc-
ion. This principle can also be applied to time-series rather
han variables and is represented by the cross-correlation

unction (CCF) (Cryer and Chan, 2008). The CCF measures
hether the two time series follow a common pattern, i.e.,
hether the slopes from one step to another correspond in

ach series, show an inverted behavior or no relationship

t all. Some time-series may also require to be shifted by a
ertain lag in order to correlate. The CCF can be computed

or the two time-series y 1 , y 2 . . . y N and z 1 , z 2 . . . z N and any
ag k by

 C F k =

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎪ ⎪ ⎩

∑ N
t= k +1 (y t − ȳ) · (z t−k − z̄) √ ∑ N

t=1 (y t − ȳ) 2
√ ∑ N

t=1 (z t − z̄) 2
if k ≥ 0

∑ N+ k
t=1 (y t − ȳ) · (z t−k − z̄) √ ∑ N

t=1 (y t − ȳ) 2
√ ∑ N

t=1 (z t − z̄) 2
if k < 0

(13)

The occurrences and frequencies of some of the log line
ypes correlate over time which means that the time-series
f the retrieved cluster sizes also correlate with each other.
he reason for such correlations can be diverse. For example,
ertain log lines may always be generated in pairs because
heir components are linked with each other. On the other
and, scheduled programs may happen to run synchronous
y coincidence. In any way, the resulting CCF k of related time-
eries should therefore be constant over time. Deviations of
ong-term trends are indicators of system behavior changes
hat should be detected as anomalies. For efficiency, we sug-
est to group the time-series in the same way that the clus-
ering of the log lines was accomplished, i.e., groups of corre-
ating time-series are incrementally built in every time step.
hese groups are monitored over time and any time-series

hat leaves, swaps or joins one of the correlating groups is con-
idered anomalous.

The correlation analysis is the final step of the concept out-
ined in Section 3 . Using the proposed procedure, anomalies
an be detected in every evolving cluster. However, it may be
esirable to aggregate the detected anomalies in every time
tep. Such an aggregation strategy is pursued in the following
ection.

.3. Aggregated detection

he previously explained procedure specifically aims at de-
ecting anomalies for a specific cluster, i.e., each detected

c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6 105

anomaly is associated with exactly one cluster. This clearly
has some advantages, e.g., the cluster representative or the
cluster members immediately give information about the ex-
act type of log line that is affected by the anomaly and
it may therefore be easier to trace back the source of the
problem.

However, the enormous amounts of clusters in combina-
tion with the probability-based approach of the prediction
limits naturally causes a rather high number of false alarms
that are raised in each time step. For example, if a prediction
interval that contains the actual value with 99% probability
is computed for 100 clusters in each time step, 1 false alarm
is raised per time step on average. In practical applications
it is therefore a tedious task to react to every single alarm
that is raised and there is a therefore need for a more robust
measure.

An intuitive way to solve this problem is to aggregate the
anomalies that occur in each time step. On average, randomly
occurring anomalies caused by natural fluctuations and noise
should occur uniformly distributed over time and are unlikely
to collectively occur in multiple clusters at a single point in
time. Given that an actual anomaly usually affects more than
1 clusters, counting the number of clusters that report anoma-
lies is therefore a reasonable start. However, this does not in-
corporate that an anomaly that lies far outside of the predic-
tion interval should be considered as more anomalous than an
anomaly that just barely exceeds the upper or lower limit. An
aggregated anomaly score should therefore yield larger values
that indicate a more severe anomalous state if more clusters
report anomalies and more of the reported deviations have a
large magnitude.

Furthermore, not all clusters should be equally weighted
when considering the anomalies that are detected in their de-
velopments. A cluster that has only recently emerged is likely
to report more false alarms due to the fact that too few historic
values are available to properly compute the prediction inter-
val. On the other hand, clusters that have been existing for a
large number of time steps are more likely to exhibit stabilized
features and are therefore more trustworthy. Contributions to
the anomaly score of a time step should hence be weighted ac-
cording to the respective durations that a cluster has already
been existing.

Before introducing such an aggregated anomaly score, a
value s t that mirrors anomalous y t values that fall below
the lower limit of the prediction interval to the upper side
is defined for convenience. With the upper prediction limit
u t = ˆ y t + Z 1 − α

2

√

Var (e) and the lower prediction limit l t =
ˆ y t − Z 1 − α

2

√

Var (e) , the mirrored value is defined as

s t =

{

y t if y t > u t
2 ̂ y t − y t if y t < l t

(14)

Note that the first case corresponds to y t lying above the
prediction limit, meaning that no action is necessary. The sec-
ond case corresponds to y t lying below the prediction limit
causing that the point needs to be mirrored around the pre-
dicted value ˆ y t which is always positioned in the center of
the prediction interval. Therefore, the distance between y t and
the closest prediction limit will remain the same after mirror-
ing. Furthermore, the set of clusters containing an anomaly at
time step t is defined as

C t A =

{
C ∈ C t : y t > u t ∨ y t < l t

}
(15)

With these definitions and the duration τ t that measures
how many time steps a cluster has already been existing, the
anomaly score a t at time step t is defined as

a t =

⎧ ⎪ ⎨

⎪ ⎩

0 if C t A = ∅
1 −

∑

C∈C t A
(u t ·log (τt)) ∣∣∣C t A

∣∣∣·∑

C∈C t A
(s t ·log (τt))

otherwise (16)

Both u t and s t are multiplied with the same log (τ t) in order
to give clusters that have been existing for a longer time more
weight. The logarithm was used to dampen this effect.

Note that u t in the numerator defines the upper limit of the
prediction interval and the variable s t in the denominator rep-
resents the actual value. It is known that s t > u t due to the fact
that only clusters that contain an anomaly at time step t are
considered in the sum and actual values y t < l t have been mir-
rored to the upper side. As both terms are weighted equally,
the denominator must always be larger than the numerator
and therefore the division is guaranteed to be smaller than 1.
Larger deviations from the expected value, i.e., a higher value
for s t , hence cause that the division yields values closer to 0.

Furthermore, including the term

∣∣C t A ∣∣ in the denominator
accounts for the impact of more clusters reporting anomalies.
Again, a higher amount of clusters reporting anomalies draws
the resulting value closer to 0. Finally, the result is subtracted
from 1 in order to have anomaly scores close to 0 indicat-
ing normal behavior while anomaly scores close to 1 indicate
anomalous behavior. In practice, an alarm should be raised if
the anomaly score exceeds some predefined threshold.

7. Evaluation

As outlined in the Section 1 , unsupervised methods are able
to detect anomalies on unlabeled data. While this is a ben-
eficial setting in practical applications where labeled data is
barely available, a proper evaluation cannot be carried out on a
largely unknown data set. The reason for this is that there is no
way to tell whether detected anomalies actually correspond
to real anomalies that occurred in the system and whether
most of the anomalies in the data have actually been detected.
While it would be easy to perform the evaluation on synthetic
log data, one could criticize that this kind of data does not
resemble practically relevant log data and is therefore not ap-
propriate for a realistic evaluation. As a compromise, the eval-
uation in this article is carried out on a semi-synthetically
created log file that only contains specific anomalies that oc-
cur at known points in time. This combines the advantages of
the real world data by incorporating sufficient complexity and
the advantages of synthetic data by enabling the creation of a
ground truth table, i.e., a complete set of anomalous log line
types that are known to appear at specific points in time.

7.1. Log data

The generation of the log data was carried out by adapting
the approach introduced by Skopik et al. (2014) . The setting

106 c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

c
A
l
p
i
f
g
n
o
t
l
d
s
f
c
t
a
c
c
o
t
l
m

t
c
d

d
d
i
u

i
c
o
h
t
n

t
a
f
t
s
a

a

e
o
l
a
l

a
s
l

7

T
t

a

T
h
a
a

1
I

7

E
t

s
t
p
a
p
v

onsists of a MANTIS Bug Tracker System

1 deployed on an

pache web server. A variable amount of virtual users simu-
ate real user behavior by navigating on the website. The users
erform actions just as real users would do, including report-

ng, assigning and deleting issues as well as clicking on entries
rom the task menu and regularly logging in and out. Log lines
enerated by their behavior are highly complex due to random

umbers determining which actions are taken and what kind

f selections are made in each step. Clicking on a certain but-
on therefore does not always generate an identical set of log
ines, especially because they frequently contain the current
ate or time, IDs as well as random selections, numbers and

trings. Clustering of the resulting log lines thus requires the
uzzy matching approach that was explained in Section 4 and

ould hardly be accomplished using parsers or templates. Fur-
hermore, some types of log lines (e.g., “Init DB” and “Quit”)
re produced for every single SQL query, while others only oc-
ur when a special action is performed. This is an important
haracteristic as it implies that the caused anomalies may be
f different magnitude in each cluster. It should also be noted

hat any action usually leads to the generation multiple log
ines and therefore anomalies may manifest themselves in

ultiple clusters.
Logs are recorded from three components: The Web Server,

he SQL database and the reverse proxy. The logs therefore
ontain the accessed URLs, user-specific data such as MAC ad-
resses as well as executed SQL queries.

With this setup, an illustrative attack scenario is intro-
uced. The scenario takes place over the course of 96 h (4
ays) and was simulated in real-time. Five virtual users are

nvolved in the creation of the logs. Three of them contin-
ously produce log lines corresponding to normal behavior,

.e., the probabilities of performing certain actions are always
onstant. Another user simulates an automatized software
r program that operates only in the first 30 min in every
our, resulting in a periodic behavior of the affected clus-

ers. The behavior of these four users is considered to be
ormal behavior that is free of anomalies. For this scenario,

he final user poses an intruder who gained unauthorized

ccess to the system after a social engineering attack. The
requencies of performed actions by this user do not cohere
o the overall behavior of the others. Over the course of the
imulation, the attacker performs the following anomalous
ctions:

1. Missing periodic event : After 17 hrs, the intruder blocks the
automatized program for 1 h from performing the sched-
uled event. The log lines corresponding to the planned ac-
tions in this time window are therefore absent from the log
file. Afterwards, the program continues to work as usual.

2. Sudden frequency peak : After 35 hrs, the attacker clicks on

a specific button for a duration of 10 min. The probability
of this event is higher compared to the other users, thus
the recorded frequency of the corresponding log lines in-
creases.

3. Long-term frequency increase : After 53 hrs, the intruder clicks
on another button for the following 8 hrs. Again there is a
1 MANTIS Bug Tracker available at https://www.mantisbt.org/ ,
ccessed 08-November-2017.
higher probability of this event, resulting in a plateau in the
recorded frequency of the corresponding log lines.

4. Gradual frequency increase : After 79 hrs, the attacker clicks
on a third button until the end of the simulation. It is as-
sumed for this case that the attacker knows about the in-
stalled anomaly detection system and therefore tries to
outsmart the algorithm by avoiding rapid changes in fre-
quency that may trigger alarms, while at the same time
the learning effect of the algorithm adapts to the malicious
behavior. After some time, the attacker is able to further
increase the clicking frequency. By continuing this pattern

for a sufficient duration, the attacker should be able to in-
ject arbitrary large frequency changes. This attack was pur-
posely added to point out deficiencies that arise from self-
learning anomaly detection systems.

Fig. 5 shows these attacks on a timeline. Large gaps of sev-
ral hours were intentionally left between the injections in

rder to ensure that previous attacks do not affect the like-
ihood of a future attack being detected. In total, the gener-
ted log file consists of around 4 million log lines. The average
ength of the log lines is around 246 characters in the raw form
nd around 218 characters after removing consecutive white
paces during the preprocessing stage. More than 99.7% of the
og lines have a length below 600 characters.

.2. Evaluation environment

he log data was generated on a general purpose worksta-
ion, with an Intel Xeon CPU E5-1620 v2 at 3.70 GHz 8 cores
nd 16 GB RAM, running Ubuntu 16.04 LTS operating system.
he workstation runs virtual servers for an Apache Web server
osting the MANTIS Bug Tracker System, a MySQL database
nd a reverse proxy. The log messages of these systems are
ggregated using syslog.

The detection algorithm was implemented in Java version

.8.0.141 and runs on a 64-bit Windows 7 machine, with an

ntel i7-3770 CPU at 3.4 GHz and 8 GB RAM.

.3. Results

valuation performance typically depends on parameter fine-
uning. Instead of searching for optimal parameter values,
everal settings are tested and compared in order to reveal
he influences of each parameter. Insights gained by such ex-
eriments are expected to generalize also on other data sets
nd aid the identification of appropriate parameter ranges in

ractical applications. Important parameters and their default
alues are as follows:

• Similarity threshold t : The threshold used for the incre-
mental generation of the static cluster maps within each

time window. A higher threshold means that log lines must
be more similar in order to be grouped within the same
cluster. This also means that a higher threshold usually re-
lates to a higher total amount of clusters. Unless otherwise
stated, t = 0 . 9 .

• Overlap thresholds θ and θpart : The thresholds used within

the transition detection algorithm. A higher threshold θ

means that clusters from different cluster maps require a

https://www.mantisbt.org/

c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6 107

Fig. 5 – Timeline of the attacks.

Fig. 6 – Effectiveness of cluster evolution approach

evaluated by the relative amount of log lines that are
represented by an evolving cluster that exists for at least 5
time steps.

higher overlap in order to be connected. Furthermore, θpart

specifies the minimum overlap that is required for clusters
that contribute to a transition, i.e., to be part of a merge or
split. Unless otherwise stated, θ = 0 . 7 and θpart = 0 . 2 .

• Time window size tw : The cluster maps are generated
within each time window. A larger time window size there-
fore means that more log lines are used for the creation of
each cluster map. Unless otherwise stated, tw = 15 min.

• Prediction level α: The prediction level is used in the
quantile 1 − α

2 of the standard normal distribution Z 1 − α
2

when computing the prediction intervals. A higher pre-
diction level leads to a smaller intervals and therefore in-
creases the amount of detected anomalies. Unless other-
wise stated, α = 0 . 01 , i.e., 1 −α = 99% of the non-anomalous
data points should be located within the boundaries.

7.3.1. Operability
The introduced clustering model and the anomaly detection
mechanism are designed to only focus on dynamic changes
that occur over multiple time windows rather than other
forms of anomalies that occur only in a single time window.
Such other anomalies are for example outliers, i.e., log lines
that form their own cluster in the construction phase due to
their high dissimilarity to all the other lines and are also not
allocated to clusters from other time windows during the allo-
cation phase. Clearly, there is no way to identify any temporal
changes from such lines as they simply do not exhibit any dy-
namic features.

While outliers are an extreme example, also clusters con-
taining more than 1 element and existing for several time
steps cannot always be used for detection. Due to the fact that
the ARIMA model requires a number of historic data points
before the prediction interval is reasonably initialized, only
anomalies detected in clusters that have been existing for at
least 5 time steps are considered. This is necessary to avoid
the relatively high amount of false alarms that occur in the
first few time steps and impair the evaluation results.

There may therefore be a concern that only few log lines
remain that are eventually contained in the cluster evolution
process. Such a situation would indicate a low credibility and
could also lead to a poor performance of the algorithm due to
the fact that most of the log lines are never considered for the
anomaly detection procedure.

It is therefore important to understand the factors that in-
fluence the ability of forming permanent and stable clusters
that exist for at least the minimum amount of time steps re-
quired for a proper anomaly detection. For a given data set,
the functioning of the clustering model in combination with
the overlap coefficient determines whether clusters are effec-
tively mapped over time. The most relevant parameter is thus
the similarity threshold t used in the clustering process. Fig. 6
shows the relative amount of log lines contained in evolving
clusters that exist for at least 5 time steps plotted against t . It
can clearly be seen that low thresholds (t ≤ 0.5) cause that only
20% − 30% of the total amount of log lines end up in evolving
clusters while large thresholds (especially 0.8 ≤ t ≤ 0.9) achieve
a representation of more than 90% of all log lines. There is thus
a clear preference towards larger thresholds.

The reason behind this tendency is as follows. Lower val-
ues for t lead to fewer clusters in each cluster map as well
more diverse types of log lines being grouped into the same
clusters. Due to the fact that there is always only one cluster
representative responsible for representing all the contained
log lines, also largely dissimilar log lines are represented by
this initial line as only a small similarity between the strings is
required. However, in other time steps it is possible that differ-
ent cluster representatives are selected for clusters with oth-
erwise similar contents. In other words, low similarity thresh-
olds cause that the cluster representatives are not appropri-
ately representing the log lines allocated to the clusters. This
is problematic when it comes to the allocation phase, since
the log lines that established a cluster in one time step are
therefore likely to be allocated to several clusters from another
time step. Thus, only few distinct connections between single
clusters can be made, because the minimum cluster similar-
ity thresholds θ and θpart for establishing transitions are hardly

108 c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

Fig. 7 – Development of cluster corresponding to log line “Init DB”. Solid black line: Actual measured cluster size. Dashed

blue line: One-step ahead prediction boundaries. Red circles: Detected anomalies.

e
p
t
c
d

o
l
i
w
t
s
t
r

r

7
V
t
t
t
t
c
i

e
t
i
f
p
o
s
t
s
l
b
e
t
a
f

(

(

(

(
(

n
t
s

T
c
s

d

ver reached. Without transitions, no cluster evolution takes
lace and hence there remain large clusters in every time step

hat do not have any correspondences in the preceding or suc-
eeding time windows and are thus unable to contribute to
ynamic anomaly detection.

On the other hand, large thresholds lead to the formation

f many clusters, with most of them containing highly simi-
ar log lines. This corresponds to a finer granularity of cluster-
ng. In every time window, the cluster maps consist of clusters
ith similar representatives and thus log lines from one clus-

er are correctly allocated to a specific cluster in another time
tep during the allocation phase. Thereby, distinct connec-
ions between clusters are established and the overlap met-
ic successfully creates transitions between the cluster maps,
esulting in many evolving clusters.

.3.2. Cluster evolution visualizations
isualizations of the time-series retrieved by cluster evolu-

ion techniques aid the understanding of the anomaly detec-
ion mechanism and demonstrate the functionality of the in-
roduced approach. Only taking evolving clusters that were
racked for at least 20 time steps into account, over 300 such

lusters were found. In the following, we discuss plots of some
nteresting clusters evolutions.

There are log lines that appear more frequently than oth-
rs, e.g., every set of SQL queries belonging to a certain ac-
ion always start with a log line stating “Init DB”. All of the
njected attacks involve the creation of SQL queries, there-
ore the cluster corresponding to this line is expected to dis-
lay the effects of all attacks. Fig. 7 shows the development
f the size of this cluster over time. Note that each time
tep covers a 15 minute period of occurring log lines, thus
he total amount of 384 time steps corresponds to a time
pan of 96 h. The actual measured cluster size (solid black
ine) is approximated in every step in order to predict the
oundaries (dashed blue lines) for the following step. When-
ver the actual size in the next step falls outside of the tube
hat is formed around the curve, an anomaly is detected

nd marked with a red circle. The figure shows the following
eatures:
t
a) A correctly detected anomaly, i.e., a true positive. This
anomaly is corresponding to the missing periodic event at-
tack. The figure shows that the periodic behavior is cap-
tured very well throughout the simulation as the position

of the prediction interval corresponds to the up-and-down

movements of the cluster size. The time-series model
learns the correct period in less than 10 time steps and is
further able to keep the correct periodicity while adjusting
to outliers (b), level shifts (c) and changes in trend (e).

b) Another correctly detected anomaly corresponding to the
sudden increase in frequency. Due to the fact that the du-
ration of this attack is smaller than the length of a time
window, only one time step is affected.

c) Another correctly detected anomaly corresponding to the
start of the long-term increase in frequency. Also the de-
crease of frequency at the end of the plateau is detected

correctly. The figure clearly shows that it only takes only
few time steps until the time-series model adapts to the
new mean value as there are no anomalies detected in be-
tween the start and the end of the plateau. This demon-
strates the self-learning ability of the time-series model to
adapt to changing environments without the need to man-
ually interfere.

d) An incorrectly detected anomaly, i.e, a false positive.
e) An undetected anomaly, i.e., a false negative. This anomaly

corresponds to the gradual frequency increase. As ex-
pected, this anomaly is not detected by the time-series
model due to the fact that the frequency change is not
rapid enough in any time step so that the actual cluster
size would fall outside of the tube.

All other points are therefore correctly undetected, i.e., true
egatives. One of the main advantages of this anomaly de-

ection methodology is that many evolving clusters that are
pecific to certain log line types are retrieved from the log file.
hereby, each cluster development may exhibit some specific
haracteristics that would remain unnoticed when only con-
idering the log file as a whole. Fig. 8 shows such a cluster that
oes not have a periodic component, i.e., the log lines con-
ained this cluster are not part of the log lines created by the

c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6 109

Fig. 8 – Development of a cluster size that corresponds to log lines affected by anomalies regarding long-term frequency

increase and the gradual frequency increase.

periodically triggered event. Therefore, the curves do not show
regular up-and-down movements. This example shows that
the ARIMA model initially requires a number of time steps un-
til stable and appropriately sized prediction intervals are com-
puted. After around 20 time steps, the tube flows around the
cluster size with a constant width and no single false positive
anomaly is detected in the first 200 time steps. Clearly, nei-
ther the missing periodic event anomaly nor the short-term
frequency peak anomaly are detected in this cluster size de-
velopment, because the log lines generated by these events
are not contained in this evolving cluster.

It is the specificity of this cluster and the lower amount
of contained log lines that make it easier to detect the re-
maining anomalies. Although Fig. 7 indicated the detected
anomalies as well, the magnitude of the change was rather
low, i.e., the average cluster size in each time step increased
only by 25% from around 280 to 350 when the long-term fre-
quency increase anomaly occurred. The cluster size displayed
in Fig. 8 however increases by 400% from around 20 to 80.
Furthermore, this plot shows several anomalies detected dur-
ing the gradual frequency increase anomaly while no anoma-
lies were detected in the previous plot. Especially in the case
where a higher prediction level (i.e., a larger thickness of the
tube) is used, anomalies possibly remain undetected in larger
clusters, but stay visible in smaller clusters. It should now be
apparent that it is necessary to consider all cluster size evolu-
tions for anomaly detection in order to ensure that anomalies
manifesting themselves only in very specific clusters are de-
tected as well.

This visualization also shows the influence of an anomaly
on the following forecasts of the prediction interval. As it can
be seen, the interval increases to an unexpectedly large thick-
ness for around 50 time steps after strong deviations from nor-
mal behavior occur. This is the result of the large error com-
puted between the anomalous value and the estimated value
increasing the range according to Eq. (12) . Because of these
effects, anomalies occurring within a certain amount of time
steps after an attack are more unlikely to be detected since
they may fall within the larger intervals despite any large de-
viations from normal behavior. It would therefore be intuitive
to remove the errors generated by anomalies from the com-
putations in order to avoid these adverse effects. It must how-
ever be noted that the errors generated by false positives are
essential for producing correctly sized prediction intervals in
the following time steps. Given that false positives usually out-
number true positives we therefore recommend to keep all
the errors for the computations, despite their influence on fu-
ture predictions. In practical applications however, a reason-
able compromise would be to omit the errors from anomalous
values that have been confirmed as true positives by a human
system administrator.

Fig. 9 shows the development of a cluster size that contains
periodically occurring log lines, where only the segment of the
time-series that contains the missing periodic event around
time step 70 is displayed. Due to the fact that these corre-
sponding lines appear very regularly and there are no other
log lines causing noise or other fluctuations, the ARIMA model
is able to approximate the curve very closely. Even though the
anomaly is correctly detected, the ARIMA model does not un-
learn the normal behavior of the tube, so that once the curve
has returned to its normal behavior, the tube is already in an
appropriate shape.

7.4. Rates

Quantitative metrics are required for an appropriate compar-
ison of results achieved in different settings. As already men-
tioned, a ground truth table containing the time steps and
samples of log lines that were generated during the respec-
tive attacks was assembled. An anomaly is detected by the al-
gorithm at a specific detection time step t d and for a specific
cluster with representative r d . Anomalies are only counted as
true positives (TP) if the ground truth table contains an entry
with expected time step t e ∈ [t d − 30 min, t d + 60 min] and e x-
pected log line content r e so that s Lev (r e , r d) ≥ t , i.e., the similar-
ity must be greater or equal to the threshold that was used for
clustering. Detected anomalies that do not fulfill one of these
requirements are counted as false positives (FP). Entries from
the ground truth table that remain undetected are counted
as false negatives (FN), i.e., actually occurring anomalies that

110 c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

Fig. 9 – Detailed view on the segment where the missing periodic event anomaly occurs.

r
t
i
t
t

(

t
a

T

C

m

H
o
o

(
r
t
c

F

a
k
F

7
T
t

2
x
t

v
p
f
a
r

Table 1 – Confusion matrix.

Actual state

Anomalous Normal

Detected state
Anomalous TP FP
Normal FN TN

f

v
t

F
i
m

m

s
t
r
t

o

T
p
t
a
a

a
p
c
t

a
T

g
w
t
c
a
h

emained undetected. The amount of true negatives (TN) is de-
ermined computationally by summing up all the time steps
n every cluster that were not detected as anomalies and sub-
ract FN . Table 1 gives an overview about the relationships of
hese values in a confusion matrix.

It is common to compute rates based on these measures
 Powers, 2011). The true positive rate (TPR) represents the frac-
ion of correctly detected anomalies from the total amount of
ctually existing anomalies and is computed by

 PR =

T P
T P + F N

(17)

learly, TPR ∈ [0, 1] and a high TPR is favorable as it implies that
any of the actually existing anomalies have been detected.
owever, the TPR neglects the amount of FP and is therefore
n its own not an appropriate measure for determining the
verall quality of the detection.

In order to overcome this problem, the false positive rate
 FPR) is frequently used in combination with the TPR . The FPR

epresents the fraction of incorrectly detected anomalies from

he total amount of non-anomalous data points. The rate is
omputed by

 PR =

F P
F P + T N

(18)

nd again FPR ∈ [0, 1]. Anomaly detection techniques try to
eep the amount of false alarms at a minimum, hence a lower
PR is favorable.

.4.1. ROC analysis
he previously mentioned metrics are now used for creating

he familiar Receiver-Operator-Characteristic (ROC) (Powers,
011), where TPR on the y-axis is plotted against FPR on the
-axis. Accordingly, classifiers that yield points close to the
op-left corner (T PR = 1 and F PR = 0) of the ROC plot are fa-
orable. We used the prediction level α in order to connect the
oints yielded from certain parameter settings. A low value
or α leads to a large prediction interval and therefore only
nomalies with extreme deviations are detected, i.e., the algo-
ithm will miss most of the anomalies but also exhibit a low
alse alarm rate (TPR ≈ 0, FPR ≈ 0). On the other hand, a high
alue for α leads to a small prediction interval which will lead

o almost all data points being detected as anomalies (TPR ≈ 1,
PR ≈ 1). In between lies a desirable trade-off value that max-
mizes TPR and minimizes FPR . Moreover, we added the first

edian (T P R = F P R) in the ROC plot which shows the perfor-
ance of a random guesser.
Fig. 10 shows the ROC analysis for different settings of the

imilarity threshold t . Thresholds smaller than 0.5 were omit-
ed due to their deficiencies discussed in Section 7.3.1 . Cor-
esponding to the insights regarding the percentage of con-
ained log lines outlined in that section, t = 0 . 85 and t = 0 . 875
utperform smaller and larger thresholds in the ROC analysis.
hese results are interpreted as follows: For an appropriate
erformance, t must be large enough to correctly differentiate
he occurring log line types while still being small enough to
void the creation of outliers due to IDs, time stamps or other
rtifacts in the strings.

Every curve shows the trade-off between a high TPR and

 low FPR . In practice, α should be set so that the resulting
oint lies at the “bend” of the curve. Since it is usually suffi-
ient to detect an anomaly in at least one cluster, we argue
hat minimizing FPR should be of primary focus. For t = 0 . 875
 practically reasonable α would thus be 0.001 as it achieves
 PR = 0 . 618 and F PR = 0 . 007 .

The time window size tw is more difficult to choose since
ood values rely on assumptions about the data. A small time
indow size corresponds to a fine granularity, i.e., changes

hat occur in short periods are more distinctly present. Ac-
ordingly, a small value for tw would be beneficial for detecting
ttack causing a short-term frequency increase. On the other
and, large window sizes have the advantage of producing less

c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6 111

Fig. 10 – ROC curves showing anomaly detection

performance for different similarity thresholds.

Fig. 11 – ROC curves showing anomaly detection

performance for different time window sizes.

Fig. 12 – ROC curves showing the influence of data
complexity on the anomaly detection performance.

volatile time-series but also average out short-term anomalies
which are then less likely detected. Furthermore, large time
window sizes increase the detection time, i.e., the duration be-
tween an attack occurring and that attack being detected. This
is due to the fact that an attack is always detected at the end of
that time window, hence the average detection time is tw

2 . Due
to the fact that no knowledge about the attacks is available be-
forehand in practical applications, it is usually appropriate to
fit the time window size according to periodic occurrences in
the data.

Fig. 11 shows the ROC analysis for different settings of
the time window size tw . For a reasonably low false positive
rate, e.g., F PR = 0 . 03 , smaller time window sizes < 60 min
clearly outperform larger time window sizes. This is due to
the mentioned issues that appear when the time window size
is larger than the duration of the attacks. Furthermore, tw = 7
min causes a similarly poor performance due to the fact that
it does not properly align with the present periodicity and
thereby leads to highly sporadic cluster developments in all
clusters that are affected by the corresponding log lines. The
best possible choices for tw are therefore factors of the peri-
odic interval, e.g., 15 min or 30 min.

In order to investigate the influence of the data set, a more
complex log file was generated. In this data set, identical at-
tacks were scheduled, i.e., the affected time intervals and the
absolute number of anomalous log lines are the same as be-
fore. However, 5 additional users constantly produce log lines
corresponding to normal behavior. This means that the at-
tacks are more difficult to detect since the fraction of anoma-
lous lines in every time window decreases. Fig. 12 shows the
comparison between the ROC curves from the complex data
set as solid lines and the previously computed ROC curves as
dashed lines. As expected, performance on the more complex
data set decreases due to the mentioned issues. Surprisingly,
t = 0 . 7 poses an exception to this pattern as the results im-
proved on the complex data set. The reason for this is that
the percentage of log lines contained in evolving clusters in-
creased compared to the simple log file, meaning that more
evolving clusters were available for anomaly detection. This
effect was already mentioned in Section 7.3.1 and is linked
to the fact that even though there are more users produc-
ing noise, the overall variability of the cluster sizes recorded
at the end of each time window decreases and thus better

112 c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

Fig. 13 – Total runtimes for different similarity thresholds.

p
t
i
l

7

S

i
d
d
t

1
t
a
m
t
t
m
p
t
t
e
c

a
t

T
e
t

A
d
b
p
a

Fig. 14 – Plot showing the continuously measured runtime
that is required for processing a certain amount of log lines.
The runtime scales linearly for all considered similarity

thresholds.

Fig. 15 – Total runtimes for different time window sizes.

i
t
a
d

t
d

w

redictions can be made. The decreased variability also means
hat it is less likely that the development of an evolving cluster
s interrupted due to randomly occurring non-representative
og lines within certain time windows.

.5. Runtime and scalability

ince anomaly detection is often computationally intensive,
t is important to consider the runtime and scalability in ad-
ition to TPR and FPR . Fig. 13 shows the recorded runtime for
ifferent similarity threshold values. Moderate values around

 = 0 . 6 are clearly favorable over extreme values close to 0 or
. Both clustering and time-series analysis are responsible for
his effect. When a low t is used, smaller numbers of clusters
re available and thus less time is spent approximating ARIMA

odels. However, the low t also causes that almost none of
hese clusters are eliminated as candidates and the compu-
ationally complex string distance metric has to be computed

ultiple times for every incoming log line. This effect disap-
ears when t is high. However, due to the large amount of clus-
ers, many ARIMA models have to be fitted, thereby increasing
he runtime. For this reason, we were not able to carry out any
xperiments with t > 0.9 due to limitations in available pro-
essing power.

In order to ensure the ability to process data streams of
rbitrary length, a linear scalability is required, i.e., the run-
ime must only linearly depend on the number of log lines.
his characteristic was empirically verified by measuring the
lapsed time after each set of 50,000 log lines. Fig. 14 shows
hese cumulated runtimes for different similarity thresholds.
s it can be seen, the runtimes exhibit a linear behavior in-
ependent from the chosen threshold and despite the attacks
eing present in the data. We therefore argue that the pro-
osed methodology allows processing any number of log lines
s well as continuous log streams.
t
The influence of the time window size on the runtime is
nvestigated in a similar manner. Fig. 15 shows all runtimes
hat were measured for different values of tw . It can immedi-
tely be seen that the runtime increases for large time win-
ows (tw > 60 min), while tw = 30 min and tw = 15 min show
he lowest runtimes. Other than for t , the runtime is solely
ependent on the time required for fitting the ARIMA model,
hile the time spent on clustering is largely independent from
w .

c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6 113

Fig. 16 – Anomaly score of every time step. The phases of occurring attacks are shaded in red.

t

The reason for this is that a fixed number of data points
from the past are used for fitting the time-series model, in-
dependent from the selected time window size. For example,
when 48 historic values are stored for fitting the time-series
model, the last 48 h are used for computing the prediction
intervals when tw = 60 min, but only 12 h are used when
w = 15 min. A smaller time window size therefore causes the

algorithm to remove data from the past earlier and anoma-
lies in the historic data thus have less influence on the predic-
tions. It is also computationally faster to fit an ARIMA model
on the anomaly-free data, thereby leading to shorter runtimes
for smaller time window sizes.

An alternative implementation could only store data
points that lie within a fixed duration in the past, e.g. the last
24 h. This has some obvious implications regarding the run-
time. The smaller the time window size is selected, the more
data points have to be considered when fitting the ARIMA
model. Therefore, the runtime is likely to increase for short
time windows and decrease for large time windows in this set-
ting.

Finally, we investigated the scalability of the algorithm
with respect to tw . For any setting, a linear behavior similar to
Fig. 14 was achieved. The interpretation is thus identical to the
previous scalability analysis. The plot is skipped for brevity.

7.6. Aggregated detection

Aggregating the detected outliers from all clusters gives an
overview of the current state of the whole system. The
anomaly score introduced in Eq. (16) is a measure for the de-
viation from the expected cluster sizes from all clusters that
exist for at least 20 time steps. Fig. 16 shows the anomaly
scores yielded in every time step using t = 0 . 875 , tw = 15 min
and α = 0 . 00001 . The value for α was chosen rather small in
order to minimize the influence of false positives while em-
phasizing the large deviations occurring in specific clusters
where the anomalies manifest themselves clearly. The inter-
vals shaded red indicate the appearances and durations of the
injected anomalies.

The plot confirms the previous observations regarding the
successful detection of the first three anomalies. The anomaly
relating to the long-term frequency increase once more shows
very distinctly that the algorithm only detects changes of the
system behavior, but immediately adjusts to shifts and trends.
For that reason, the anomaly score within the shaded interval
is mostly 0. Only when the system returns to the normal be-
havior, the anomaly score shoots up again. There further exist
a few spikes outside of the shaded regions which are either

false positives or artifacts from previous anomalies, e.g., the
small spikes around time step 250.

In practice, the anomaly score may be used with an alarm
threshold. In this scenario, a threshold around 0.4 yields rea-
sonable results since all anomalies and only a single false
positive are reported. The selection of this alarm threshold
should be decided individually from observation of the sys-
tem at hand. Alternatively, the anomaly score could again be
treated as a time-series and analyzed with appropriate meth-
ods.

7.7. Application on real log data

While it is difficult to determine TPR and FPR , insights about
the practical applicability can be derived from experiments
with real log data. Therefore, the anomaly detection was ap-
plied on log data collected within the Austrian Institute of
Technology (AIT). Both automatized processes that operate
with different periodicities as well as erratic human behavior
contribute to the captured logs. The logs were recorded over
the course of 1 week without any interruptions. The follow-
ing parameters were selected: t = 0 . 8 , tw = 30 min, θ = 0 . 7
and θpart = 0 . 2 . With this setting, more than 90% of the total
amount of log lines are successfully represented by evolving
clusters that exist for at least 5 time steps. Fig. 17 shows an
exemplary cluster size development that exhibits interesting
characteristics. A time window size of 30 min means that 1 day
is represented by 48 time steps. The patterns that are visible
in the plot appear accordingly to this interval on the first, sec-
ond, third and seventh day. As expected, these plateaus are
correctly identified as anomalies. The ARIMA model was set
up to recognize periodicities repeating within a maximum of
12 h and this pattern is therefore not learned.

Other plots exhibited artifacts that corresponded to the
displayed cluster size but differed in shape and magnitude.
Furthermore, some clusters captured the highly precise peri-
odic behavior of scheduled programs or the noisy behavior of
randomly interfering events.

Fig. 18 shows the aggregated anomaly score computed for
all clusters that exist for at least a total of 100 time steps. Sev-
eral of the spikes correspond to the artifacts visible in the clus-
ter evolution plot. Furthermore, some anomalies from other
clusters also yield a rather high anomaly score, e.g., at time
step 150. It appears that the most anomalies occurred during
the third day and only few anomalies occurred on the fourth,
fifth and sixth day.

There was no known attack taking place during the time
where the log was captured and the detected anomalies only
correspond to harmless events such as updates. It is not sur-

114 c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

Fig. 17 – Development of a cluster size measured on real data.

Fig. 18 – Anomaly score computed on real data.

p
l
i
w
c
l
a
o
o
a
o
i
a
p

8

A
w
t
t
t
d
b
m
o
f
t
s

r
m
o

t
w
o
t
a
h

t
t
i
s
m
w
t
t
i
a
t
i
t
j
c

d
l
a

rising that the algorithm detects such events as anoma-
ies due to the fact that the attacks are assumed to man-
fest themselves in a similar way. There is thus no simple
ay for an algorithm to differentiate between an anomaly

orresponding to an attack and an anomaly caused by regu-
ar events such as updates. This is an obvious drawback that
ffects unsupervised self-learning anomaly detection meth-
ds in general. Nevertheless, in critical systems the risk of
ccasional false alarms is accepted in order to ensure that
ttacks that are difficult to detect for other methods are not
verseen. Furthermore, the knowledge of the human admin-
strator about scheduled events that are possibly detected as
nomalies should be sufficient to dismiss many of the false
ositives immediately.

. Conclusion and future work

 methodology for dynamic anomaly detection in log files
as introduced in this paper. At first, log lines are incremen-

ally grouped by similarity in order to establish static clus-
er maps. Then, log lines are allocated to the existing clus-
er maps created in the preceding and succeeding time win-
ows. Thereby, a connection between clusters of two neigh-
oring cluster maps that previously did not share any com-
on elements is established. This enables the computation

f an overlap metric that measures the likelihood of a cluster
rom one cluster map transforming into another cluster from

he succeeding cluster map and allows the detection of tran-
itions such as splits or merges. Metrics are derived from the
esulting cluster developments and approximated by ARIMA

odels. Deviations from expected behavior are detected using
ne-step ahead forecasts.

A semi-synthetically generated log file was used for evalua-
ion. The anomaly detection showed promising performances
hen applied on the evolutions of individual clusters. More-

ver, an aggregated anomaly score showed clear peaks when

he attacks were injected in the system. Finally, evaluation on

 real log file revealed anomalies corresponding to system be-
avior changes.

Several modifications that may have a positive influence on

he overall performance are possible. The incremental clus-
ering algorithm could be replaced by another machine learn-
ng technique that is able to group similar strings in an un-
upervised manner. Despite higher computational require-
ents, the mentioned overlap metric that takes multiple time
indows into account when determining the connections be-

ween clusters could result in more reliable evolutions. Fur-
hermore, the time-series analysis could be carried out us-
ng other models than ARIMA. Detection on time-series could

lso be realized using filters rather than predictions. In addi-
ion, methods that employ change point analysis are promis-
ng solutions to detect anomalies that cause gradual and long-
erm changes (Killick et al., 2012). Especially the fourth in-
ected anomaly that remained undetected in many clusters
ould successfully be identified by such techniques.

The evaluation focused on the size of the cluster as it
irectly represents the frequency of the corresponding log

ine types in the respective time windows and was thus
ppropriate to detect the injected attacks. However, many

c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6 115

other useful metrics that were defined in Sections 5.2 and
5.3 were left out from practical analysis, even though they
could be better fitted for special types of anomalies. Other
than performing anomaly detection on time-series created on
each of these features alone there is also the possibility to
combine them and apply multivariate outlier detection.

Finally, the problem of rather high amounts of false pos-
itives that all anomaly detection techniques suffer from re-
mains unsolved. It appears that every attempt to make the
algorithm more robust against such influences at the same
time restricts its ability of detecting certain types of anoma-
lies. Trustworthy and up-to-date domain knowledge about the
specific use case would be required in order to additionally
support the self-learning methods in differentiating between
normal behavior and an actual anomaly.

Acknowledgements

This work was partly funded by the ECSEL project SemI40
(692466) and the FFG project synERGY (855457) and carried out
in course of a master thesis at the Vienna University of Tech-
nology.

R E F E R E N C E S

Amor NB , Benferhat S , Elouedi Z . Naive bayes vs decision trees in

intrusion detection systems. In: Proceedings of the 2004 ACM

symposium on applied computing, SAC ’04. New York, NY,
USA: ACM; 2004. p. 420–4 .

Andreasson J, Geijer C. Log-based anomaly detection for system

surveillance. Master’s thesis; 2015.
Asur S , Parthasarathy S , Ucar D . An event-based framework for

characterizing the evolutionary behavior of interaction

graphs. ACM Trans Knowl Discov Data 2009;3(4) 16:1–16:36 .
Bilgin CC , Yener B . Dynamic network evolution: models,

clustering, anomaly detection. IEEE Netw. 2006 .
Bródka P , Saganowski S , Kazienko P . Ged: the method for group

evolution discovery in social networks. Soc Netw Anal Mining
2013;3(1):1–14 .

Carmi A , Septier F , Godsill SJ . The Gaussian mixture MCMC

particle algorithm for dynamic cluster tracking. In:
Proceedings of the 2009 12th international conference on

information fusion; 2009. p. 1179–86 .
Chakrabarti D , Kumar R , Tomkins A . Evolutionary clustering. In:

Proceedings of the 12th ACM SIGKDD international
conference on knowledge discovery and data mining. New

York, NY, USA: ACM; KDD ’06; 2006. p. 554–60 .
Chan J , Bailey J , Leckie C . Discovering correlated spatio-temporal

changes in evolving graphs. Knowl Inf Syst 2008;16(1):53–96 .
Chandola V , Banerjee A , Kumar V . Anomaly detection: a survey.

ACM Comput Surv 2009;41(3) 15:1–15:58 .
Chi Y , Song X , Zhou D , Hino K , Tseng BL . On evolutionary spectral

clustering. ACM Trans Knowl Discov Data 2009;3(4) 17:1–17:30 .
Chin SC , Ray A , Rajagopalan V . Symbolic time series analysis for

anomaly detection: A comparative evaluation. Signal Process
2005;85(9):1859–68 .

Cortez P , Rio M , Rocha M , Sousa P . Multi-scale internet traffic
forecasting using neural networks and time series methods.
Expert Syst. 2012;29(2):143–55 .

Cryer J , Chan K . Time series analysis: with applications in R,
Springer Texts in Statistics. Springer New York; 2008 .

Esling P , Agon C . Time-series data mining. ACM Comput Surv
2012;45(1) 12:1–12:34 .
Falkowski T , Bartelheimer J , Spiliopoulou M . Mining and

visualizing the evolution of subgroups in social networks. In:
Proceedings of the 2006 IEEE/WIC/ACM international
conference on web intelligence (WI 2006 main conference
proceedings)(WI’06); 2006. p. 52–8 .

Fiore U , Palmieri F , Castiglione A , De Santis A . Network anomaly
detection with the restricted boltzmann machine.
Neurocomput 2013;122:13–23 .

Fu Q , Lou JG , Wang Y , Li J . Execution anomaly detection in

distributed systems through unstructured log analysis. In:
Proceedings of the 2009 ninth IEEE international conference
on data mining. Washington, DC, USA: IEEE Computer Society;
ICDM ’09; 2009. p. 149–58 .

Goh J , Adepu S , Tan M , Lee ZS . Anomaly detection in cyber
physical systems using recurrent neural networks. In:
Proceedings of the 2017 IEEE 18th international symposium

on high assurance systems engineering (HASE); 2017. p. 140–5 .
Goldberg MK , Hayvanovych M , Magdon-Ismail M . Measuring

similarity between sets of overlapping clusters. In:
Proceedings of the 2010 IEEE second international conference
on social computing. Washington, DC, USA: IEEE Computer
Society; SOCIALCOM ’10; 2010. p. 303–8 .

Greene D , Cunningham P . Multi-view clustering for mining
heterogeneous social network data. Proceedings of the paper
presented at the workshop on information retrieval over
social networks, 31st European conference on information

retrieval (ECIR’09). Toulouse, France, 2009 .
Greene D , Doyle D , Cunningham P . Tracking the evolution of

communities in dynamic social networks. In: Proceedings of
the 2010 international conference on advances in social
networks analysis and mining; 2010. p. 176–83 .

Gupta M , Gao J , Aggarwal C , Han J . Outlier detection for temporal
data. Morgan & Claypool Publishers; 2014 .

He S , Zhu J , He P , Lyu MR . Experience report: System log analysis
for anomaly detection. In: Proceedings of the 2016 IEEE 27th

international symposium on software reliability engineering
(ISSRE); 2016. p. 207–18 .

Hill DJ , Minsker BS . Anomaly detection in streaming
environmental sensor data: a data-driven modeling approach.
Environ Model Softw 2010;25(9):1014–22 .

Hyndman RJ. The difference between prediction intervals and

confidence intervals.
https://robjhyndman.com/hyndsight/intervals/ ; 2013. [Online;
accessed 07-August-2017].

Jensen CS , Lin D , Ooi BC . Continuous clustering of moving
objects. IEEE Trans Knowl Data Eng. 2007;19(9):1161–74 .

Juvonen A , Sipola T , Hämäläinen T . Online anomaly detection

using dimensionality reduction techniques for http log
analysis. Comput Netw 2015;91:46–56 .

Khalilian M, Mustapha N. Data Stream Clustering: Challenges and
Issues. Proceedings of the International MultiConference of
Engineers and Computer Scientists, 1; 2010 . arXiv: 1006.5261

Killick R , Fearnhead P , Eckley IA . Optimal detection of
changepoints with a linear computational cost. J Am Stat
Assoc 2012;107(500):1590–8 .

Kruegel C , Vigna G . Anomaly detection of web-based attacks. In:
Proceedings of the 10th ACM conference on computer and

communications security; CCS ’03. New York, NY, USA: ACM;
2003. p. 251–61 .

Landauer M , Wurzenberger M , Skopik F , Settanni G , Filzmoser P .
Time series analysis: unsupervised anomaly detection beyond
outlier detection. Proceedings of the international conference
on information security practice and experience, 2018 .

Lee P , Lakshmanan LVS , Milios EE . Incremental cluster evolution

tracking from highly dynamic network data. In: Proceedings
of the 2014 IEEE 30th international conference on data
engineering; 2014. p. 3–14 .

https://doi.org/10.13039/501100004955
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0023
https://robjhyndman.com/hyndsight/intervals/
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0025
http://arxiv.org/abs/1006.5261
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0030

116 c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

P

P

S

S

S

S

T

T

T

V

W

X

Y

Z

c
m

s

b
a

i
b
b
p
s

incombe B . Anomaly detection in time series of graphs using
arma processes. Asor Bull 2005;24(4):2 .

owers DMW . Evaluation: From precision, recall and f-measure to
roc., informedness, markedness & correlation. Journal of
Machine Learning Technologies 2011;2:37–63 .

ilva JA , Faria ER , Barros RC , Hruschka ER , Carvalho ACPLFd ,
Gama Ja . Data stream clustering: a survey. ACM Comput Surv
2013;46(1) 13:1–13:31 .

kopik F , Settanni G , Fiedler R , Friedberg I . Semi-synthetic data
set generation for security software evaluation. In:
Proceedings of the 2014 twelfth annual international
conference on privacy, security and trust; 2014. p. 156–63 .

perotto A , Sadre R , Pras A . Anomaly characterization in

flow-based traffic time series. In: Proceedings of the 8th IEEE
international workshop on IP operations and management;
IPOM ’08;. Berlin, Heidelberg: Springer-Verlag; 2008. p. 15–27 .

piliopoulou M , Ntoutsi I , Theodoridis Y , Schult R . Monic:
modeling and monitoring cluster transitions. In: Proceedings
of the 12th ACM SIGKDD international conference on

knowledge discovery and data mining; KDD ’06. New York, NY,
USA: ACM; 2006. p. 706–11 .

akaffoli M , Sangi F , Fagnan J , Zäıane OR . Community evolution

mining in dynamic social networks. Procedia-Soc Behav Sci
2011;22:49–58 .

hottan M , Ji C . Anomaly detection in ip networks. IEEE Trans
Signal Process 2003;51(8):2191–204 .

oyoda M , Kitsuregawa M . Extracting evolution of web
communities from a series of web archives. In: Proceedings of
the Fourteenth ACM conference on hypertext and hypermedia
HYPERTEXT ’03;. New York, NY, USA: ACM; 2003. p. 28–37 .

aarandi R . A data clustering algorithm for mining patterns from

event logs. In: Proceedings of the 3rd IEEE workshop on IP
operations management (IPOM 2003) (IEEE Cat. No.03EX764);
2003. p. 119–26 .

urzenberger M , Skopik F , Landauer M , Greitbauer P , Fiedler R ,
Kastner W . Incremental clustering for semi-supervised
anomaly detection applied on log data. In: Proceedings of the
12th international conference on availability, reliability and

security. ACM; 2017. p. 31 .
u W , Huang L , Fox A , Patterson D , Jordan MI . Detecting

large-scale system problems by mining console logs. In:
Proceedings of the ACM SIGOPS 22Nd symposium on

operating systems principles SOSP ’09;. New York, NY, USA:
ACM; 2009. p. 117–32 .

assin W , Udzir NI , Muda Z , Sulaiman MN . K-means clustering
and naive Bayes classification for intrusion detection.
Proceedings of the 4th international conference on computing
and informatics, 2013 .

hou A , Cao F , Qian W , Jin C . Tracking clusters in evolving data
streams over sliding windows. Knowl Inf Syst
2008;15(2):181–214 .

Dipl.-Ing. Max Landauer finished his Bach-
elor’s Degree in Business Informatics at the
Vienna University of Technology in 2016.
In 2017, he joined the Austrian Institute of
Technology in 2017 where he carried out his
Master Thesis. He started his PhD studies in

2018 and is currently employed as a Junior
Scientist at AIT. His main research interests
are anomaly detection and log data analysis.
DI Markus Wurzenberger finished his Bach-
elor’s Degree in Mathematics in Science and

Technology in 2013. In 2014 he joined AIT

as a freelancer and finished his Master’s De-
gree in Technical Mathematics in 2015. In the
end of 2015 he joined AIT as Junior Scientist
and is working on national and international
projects in the context of anomaly detection.
In 2016 he started his PhD studies in Com-
puter Science.

Dr. Florian Skopik , CISSP, CISM, CCNP-S
joined the Austrian Institute of Technology
in 2011 and is the Thematic Coordinator of
AIT’s cyber security research program. He
coordinates national and international (EU)
research projects, as well as the overall re-
search direction of the team. The main top-
ics of his projects are focusing on smart
grid security, the security of critical infras-
tructures and national cyber security. He
published more than 100 scientific confer-
ence papers and journal articles and holds
some 20 industryrecognized security certifi-

ations, Florian is member of various conference program com-
ittees and editorial boards, as well as standardization groups,

uch as ETSI TC Cyber and OASIS CTI. Florian is IEEE Senior Mem-
er, Member of the Association for Computing Machinery (ACM)
nd Member of the International Society of Automation (ISA).

Giuseppe Settanni , MSc, CISSP, joined AIT in

2013 and is currently working as a Scientist
in the Centre for Digital Safety and Secu-
rity. He holds a MSc degree in Telecommu-
nication Engineering from Polytechnic Uni-
versity of Turin, Italy, as well as a Bachelor
degree in Telecommunication Engineering
from Polytechnic University of Bari, Italy. Be-
fore joining AIT, Giuseppe Settanni worked

for 2 years at FTW (Telecommunication Re-
search Center in Vienna) as a communi-
cation network researcher. His current re-
search interests include security of critical

nfrastructures, information sharing, anomaly detection and cy-
er threat intelligence management for national defense. He has
een involved in several national and EU-funded applied research

rojects concerning security in communication and information

ystems.

Dr. Peter Filzmoser is a Professor of Statis-
tics at the Vienna University of Technology,
Austria, and Head of the Research Group

Computational Statistics. He received his
Ph.D. and postdoctoral lecture qualification

from the same university. He was a Visit-
ing Professor at Toulouse, France and Be-
larus. Furthermore, he has authored more
than 200 research articles and is a co-author
of a book on analyzing environmental data
(Wiley, 2008), on multivariate methods in

chemometrics (CRC Press, 2009), and on

compositional data analysis (Springer, 2018).

http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30633-3/sbref0044

	Dynamic log file analysis: An unsupervised cluster evolution approach for anomaly detection
	1 Introduction
	2 Related work
	3 Concept
	4 Clustering
	5 Cluster evolution
	5.1 Cluster tracking
	5.2 Cluster transitions
	5.3 Evolution metrics

	6 Time-series analysis
	6.1 Forecasting
	6.2 Correlation
	6.3 Aggregated detection

	7 Evaluation
	7.1 Log data
	7.2 Evaluation environment
	7.3 Results
	7.3.1 Operability
	7.3.2 Cluster evolution visualizations

	7.4 Rates
	7.4.1 ROC analysis

	7.5 Runtime and scalability
	7.6 Aggregated detection
	7.7 Application on real log data

	8 Conclusion and future work
	 Acknowledgements

	Reference

