
Computers & Security 92 (2020) 101739

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

System log clustering approaches for cyber security applications: A

survey

Max Landauer a , ∗, Florian Skopik

a , Markus Wurzenberger a , Andreas Rauber b

a Austrian Institute of Technology, Austria
b Vienna University of Technology, Austria

a r t i c l e i n f o

Article history:

Received 23 December 2019

Accepted 29 January 2020

Available online 31 January 2020

Keywords:

Log clustering

Cyber security

Log mining

Signature extraction

Anomaly detection

a b s t r a c t

Log files give insight into the state of a computer system and enable the detection of anomalous events

relevant to cyber security. However, automatically analyzing log data is difficult since it contains mas-

sive amounts of unstructured and diverse messages collected from heterogeneous sources. Therefore,

several approaches that condense or summarize log data by means of clustering techniques have been

proposed. Picking the right approach for a particular application domain is, however, non-trivial, since al-

gorithms are designed towards specific objectives and requirements. This paper therefore surveys existing

approaches. It thereby groups approaches by their clustering techniques, reviews their applicability and

limitations, discusses trends and identifies gaps. The survey reveals that approaches usually pursue one

or more of four major objectives: overview and filtering, parsing and signature extraction, static outlier

detection, and sequences and dynamic anomaly detection. Finally, this paper also outlines a concept and

tool that support the selection of appropriate approaches based on user-defined requirements.

© 2020 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

p

p

s

n

t

a

g

b

t

a

s

s

t

p

e

t

(

r

n

t

d

o

c

t

c

2

m

a

c

c

o

i

f

d

s

h

0

. Introduction

Log files contain information about almost all events that take

lace in a system, depending on the log level. For this, the de-

loyed logging infrastructure automatically collects, aggregates and

tores the logs that are continuously produced by most compo-

ents and devices, e.g., web servers, data bases, or firewalls. The

extual log messages are usually human-readable and attached to

 time stamp that specifies the point in time the log entry was

enerated. Especially for large organizations and enterprises, the

enefits of having access to long-term log data are manifold: His-

oric logs enable forensic analysis of past events. Most prominently

pplied after faults occurred in the system, forensic analysis gives

ystem administrators the possibility to trace back the roots of ob-

erved problems. Moreover, the logs may help to recover the sys-

em to a non-faulty state, reset incorrect transactions, restore data,

revent losses of information, and replicate scenarios that lead to

rroneous states during testing. Finally, logs also allow administra-

ors to validate the performance of processes and discover bottle-
∗ Corresponding author.

E-mail addresses: max.landauer@ait.ac.at (M. Landauer), florian.skopik@ait.ac.at

F. Skopik), markus.wurzenberger@ait.ac.at (M. Wurzenberger),

auber@ifs.tuwien.ac.at (A. Rauber).

n

p

c

a

e

ttps://doi.org/10.1016/j.cose.2020.101739

167-4048/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article u
ecks. In addition to these functional advantages, storing logs is

ypically inexpensive since log files can effectively be compressed

ue to a high number of repeating lines.

A major issue with forensic log analysis is that problems are

nly detected in hindsight. Furthermore, it is a time- and resource-

onsuming task that requires domain knowledge about the sys-

em at hand. For these reasons, modern approaches in cyber se-

urity shift from a purely forensic to a proactive analysis (He et al.,

017b). Thereby, real-time fault detection is enabled by constantly

onitoring system logs in an online manner, i.e., as soon as they

re generated. This allows timely responses and in turn reduces the

osts caused by incidents and cyber attacks. On top of that, indi-

ators for upcoming erroneous system behavior can frequently be

bserved in advance. Detecting such indicators early enough and

nitiating appropriate countermeasures can help to prevent certain

aults altogether.

Unfortunately, this task is hardly possible for humans since log

ata is generated in immense volumes and fast rates. When con-

idering large enterprise systems, it is not uncommon that the

umber of daily produced log lines is up in the millions, for exam-

le, publicly available Hadoop Distributed File System (HDFS) logs

omprise more than 4 million log lines per day (Xu et al., 2009)

nd small organizations are expected to deal with peaks of 22,0 0 0

vents per second (Allen and Richardson, 2019). Clearly, this makes
nder the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cose.2020.101739
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2020.101739&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:max.landauer@ait.ac.at
mailto:florian.skopik@ait.ac.at
mailto:markus.wurzenberger@ait.ac.at
mailto:rauber@ifs.tuwien.ac.at
https://doi.org/10.1016/j.cose.2020.101739
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739

T

s

u

t

(

t

t

a

i

l

R

s

i

l

t

t

c

u

e

t

T

d

a

F

p

s

b

c

n

e

t

s

i

d

2

d

a

s

p

c

t

s

s

t

t

N

r

w

j

e

s

s

w

+
manual analysis impossible and it thus stands to reason to employ

machine learning algorithms that automatically process the lines

and recognize interesting patterns that are then presented to sys-

tem operators in a condensed form.

One method for analyzing large amounts of log data is clus-

tering. Thus, several clustering algorithms that were particularly

designed for textual log data have been proposed in the past.

Since most of the algorithms were mainly developed for certain

application-specific scenarios at hand, their approaches frequently

differ in their overall goals and assumptions on the input data. We

were specifically interested to discover the different strategies the

authors used to pursue the objectives induced by their use-cases.

However, to the best of our knowledge there is no exhaustive sur-

vey on state-of-the-art log data clustering approaches that focuses

on applications in cyber security. Despite also concerned with cer-

tain types of log files, existing works are either outdated or focus

on network traffic classification (Ewards et al., 2013), web cluster-

ing (Carpineto et al., 2009), and user profiling (Facca and Lanzi,

20 05; Vakali et al., 20 04). Other surveys address only log parsers

rather than clustering (Zhu et al., 2019).

In this paper we therefore create a survey of current and estab-

lished strategies for log clustering found in scientific literature. This

survey is oriented towards the identification of overall trends and

highlights the contrasts between existing approaches. This sup-

ports analysts in selecting methods that fit the requirements im-

posed by their systems. In addition, with this paper we aim at the

generation of a work of reference that is helpful for all authors

planning to publish in this field. Overall, the research questions we

address with this paper are as follows:

• What are essential properties of existing log clustering algo-

rithms?

• How are these algorithms applied in cyber security?

• On what kind of data do these algorithms operate?

• How were these algorithms evaluated?

The remainder of the paper is structured as follows.

Section 2 outlines the problem of clustering log data and dis-

cusses how log analysis is used in the cyber security domain.

In Section 3 , we explain our method of carrying out the liter-

ature study. The results of the survey are stated and discussed

in Section 4 . We then propose a decision model for selecting

appropriate clustering approaches and demonstrate it based on

the survey results in Section 5 . Finally, Section 6 concludes the

paper.

2. Survey Background

Log data exhibits certain characteristics that have to be taken

into account when designing a clustering algorithm. In the follow-

ing, we therefore discuss important properties of log data, outline

the reasons why log data is suitable to be clustered and look into

application scenarios relevant to cyber security.

2.1. The nature of log data

Despite the fact that log data exists in various forms, some gen-

eral assumptions on their compositions can be made. First, a log

file typically consists of a set of single- or multi-line strings listed

in inherent chronological order. This chronological order is usu-

ally underpinned by a time stamp attached to the log messages. 1
1 The order and time stamps of messages do not necessarily have to correctly

represent the actual generation of log lines due to technological restrictions ap-

pearing during log collection, e.g., delays caused by buffering or issues with time

synchronization. A thorough investigation of any adverse consequences evoked by

such effects is considered out of scope for this paper.

+

a

t

s

“

s
he messages may be highly structured (e.g., a list of comma-

eparated values), partially structured (e.g., attribute-value pairs),

nstructured (e.g., free text of arbitrary length) or a combination

hereof. In addition, log messages sometimes include process IDs

PIDs) that relate to the task (also referred to as thread or case)

hat generated them. If this is the case, it is simple to extract log

races, i.e., sequences of related log lines, and perform workflow

nd process mining (Nandi et al., 2016). Other artifacts sometimes

ncluded in log messages are line numbers, an indicator for the

evel or severity of the message (TRACE, DEBUG, INFO, WARN, ER-

OR, FATAL, ALL, or OFF), and a static identifier referencing the

tatement printing the message (Bao et al., 2018).

Arguably, log files are fairly different from documents written

n natural language. This is not necessarily the case because the

og messages themselves are different from natural language (since

hey are supposed to be human-readable), but rather because of

wo reasons: (i) Similar messages repeat over and over. This is

aused by the fact that events are recurring since procedures are

sually executed in loops and the majority of the log lines are gen-

rated by a limited set of print statements, i.e., predefined func-

ions in the code that write formatted strings to some output. (ii)

he appearances of some messages are highly correlated. This is

ue to the fact that programs usually follow certain control flows

nd components that generate log lines are linked with each other.

or example, two consecutive print statements will always produce

erfectly correlated log messages during normal system behavior

ince the execution of the first statement will always be followed

y the execution of the second statement. In practice, it is diffi-

ult to derive such correlations since they often depend on exter-

al events and are the result of states and conditions.

These properties allow system logs to be clustered in two differ-

nt ways. First, clustering individual log lines by the similarity of

heir messages yields an overview of all events that occur in the

ystem. Second, clustering sequences of log messages gives insight

nto the underlying program logic and uncovers otherwise hidden

ependencies of events and components.

.2. Static clustering

We consider clustering individual log lines as a static proce-

ure, because the order and dependencies between lines is usu-

lly neglected. After such static line-based clustering, the resulting

et of clusters should ideally resemble the set of all log-generating

rint statements, where each log line should be allocated to the

luster representing the statement it was generated by. Examining

hese statements in more detail shows that they usually comprise

tatic strings that are identical in all messages produced by that

tatement and variable parts that are dynamically replaced at run

ime. Thereby, variable parts are frequently numeric values, iden-

ifiers (e.g., IDs, names, or IP addresses), or categorical attributes.

ote that the generation of logs using mostly fixed statements is

esponsible for a skewed word distribution in log files, where few

ords from the static parts appear very frequently while the ma-

ority of words appears very infrequently or even just once (Ning

t al., 2014; Vaarandi, 2003).

In the following, we demonstrate issues in clustering with the

ample log lines shown in Fig. 1 . In the example, log messages de-

cribe users logging in and out. Given this short log file, a human

ould most probably assume that the two statements print(“User ”

 name + “ logs in with status ” + status) and print(“User ” + name

 “ logs out with status ” + status) generated the lines, and thus

llocate lines {1, 2, 4} to the former and lines {3, 5} to the lat-

er cluster. From this clustering, the templates (also referred to as

ignatures, patterns, or events) “User ∗ logs in with status ∗” and

User ∗ logs out with status ∗” can be derived, where the Kleene

tar ∗ denotes a wildcard accepting any word at that position.

M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739 3

Fig. 1. Sample log messages for static analysis.

B

c

i

D

t

t

c

I

c

w

c

p

s

l

t

w

j

s

r

a

c

s

e

a

2

i

H

p

o

t

b

t

a

t

a

c

a

Fig. 3. Sample log events visualized on a timeline.

s

∗

∗

o

s

e

b

i

s

b

t

a

i

a

a

u

i

m

t

n

c

i

p

f

o

t

s

2

o

u

i

i

o

c

o

c

t
eside the high resemblance of the original statements, the wild-

ards appear to be reasonably placed since all other users logging

n or out with any status will be correctly allocated, e.g., “User

ave logs in with status 0”.

Other than humans, algorithms lack semantic understanding of

he log messages and might just as well group the lines according

o the user name, i.e., create clusters {1, 3}, {2, 5}, and {4}, or ac-

ording to a state variable, i.e., create clusters {1, 2, 3, 5} and {4}.

n the latter case, the most specific templates corresponding to the

lusters are “User ∗ logs ∗ with status 1” and “User Charlie logs in

ith status -1”. In most scenarios, the quality of these templates is

onsidered to be poor, since the second wildcard of the first tem-

late is an over-generalization of a categorical attribute and the

econd template is overly specific. Accordingly, newly arriving log

ines would be likely to form outliers, i.e., not match any cluster

emplate.

With this example in mind we want to point out that there al-

ays exist a multitude of different possible valid clusterings and

udging the quality of the clusters is eventually a subjective deci-

ion that is largely application-specific. For example, investigations

egarding user-behavior may require that all log lines generated by

 specific user end up in the same cluster. In any way, appropriate

luster quality is highly important since clusters are often the ba-

is for further analyses that operate on top of the grouped data and

xtracted templates. The next section explores dynamic clustering

s such an application that utilizes static cluster allocations.

.3. Dynamic clustering

As pointed out earlier, log files are suited for dynamic cluster-

ng, i.e., allocation of sequences of log line appearances to patterns.

owever, raw log lines are usually not suited for such sequential

attern recognition, due to the fact that each log line is a uniquely

ccurring instance describing a part of the system state at a par-

icular point in time. Since pattern recognition relies on repeating

ehavior, the log lines first have to be allocated to classes that refer

o their originating event. This task is enabled by static clustering

s outlined in the previous section.

In the following, we consider the sample log file shown in Fig. 2

hat contains three users logging into the system, performing some

ction, and logging out. We assume that these steps are always

arried out in this sequence, i.e., it is not possible to perform an

ction or log out without first being logged in.
Fig. 2. Sample log messages and their event allocations for dynamic analysis.

p

f

v

a

l

d

We assume that the sample log file has been analyzed by a

tatic clustering algorithm to generate the three templates A = ”User

logs in with status ∗“, B = ”User ∗ performs action

∗“, and C = ”User

logs out with status ∗“. It is then possible to assign each line one

f the events as indicated on the right side of the figure. In such a

etting, the result of a dynamic clustering algorithm could be the

xtracted sequence A, B, C since this pattern describes normal user

ehavior. However, the events in lines 6 and 7 are switched, thus

nterrupting the pattern. Fig. 3 shows that the reason for this is-

ue is caused by interleaved user behavior, i.e., user Charlie logs in

efore user Bob logs out.

Since many applications are running in parallel in real sys-

ems, interleaved processes are commonly occurring in log files

nd thus complicate the pattern extraction process. As mentioned

n Section 2.1 , some log files include process IDs that allow to an-

lyze the corresponding logs isolated from interrupting processes

nd thus resolve this issue. In the simple example from Fig. 2 , the

sername could have been used for this purpose. In addition to

nterleaved event sequences, real systems obviously involve much

ore complex patterns, including arbitrarily repeating, optional, al-

ernative, or nested subpatterns.

While sequence mining is common, it is not the only dy-

amic clustering technique. In particular, similar groups of log lines

an be formed by aggregating them in time-windows and analyz-

ng their frequencies, co-occurrences, or correlations. For exam-

le, clustering could aim at generating groups of log lines that

requently occur together. Note that in this setting, the ordering

f events is not relevant, but only their occurrence within a cer-

ain time interval. The next section outlines several applications of

tatic and dynamic clustering for system security.

.4. Applications in the security domain

Due to the fact that log files contain permanent documentation

f almost all events that take place in a system, they are frequently

sed by analysts to investigate unexpected or faulty system behav-

or in order to find its origin. In some cases, the strange behav-

or is caused by system intrusions, cyber attacks, malware, or any

ther adversarial processes. Since such attacks often lead to high

osts for affected organizations, timely detection and clarification

f consequences is of particular importance.

Independent from whether anomalous log manifestations are

aused by randomly occurring failures or targeted adversarial ac-

ivity, their detection is of great help for administrators and may

revent or reduce costs. Clustering is able to largely reduce the ef-

ort required to manually analyze log files, for example, by pro-

iding summaries of log file contents, and even provides function-

lities to automatize detection of anomalous behavior. In the fol-

owing, we outline some of the most relevant types of anomalies

etectable or supported by clustering.

• Outliers are single log lines that do not match any of the exist-

ing templates or are dissimilar to all identified clusters that are

known to represent normal system behavior. Outliers are often

new events that have not occurred during clustering or contain

highly dissimilar parameters in the log messages. An example

could be an error log message in a log file that usually only

contains informational and debugging messages.

4 M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739

a

t

a

e

i

3

2

L

a

D

a

fi

(

l

c

G

1

s

a

a

a

o

f

s

t

s

A

v

2 https://dl.acm.org/results.cfm .
3 https://ieeexplore.ieee.org/Xplore/home.jsp .
4 https://scholar.google.at/ .
• Frequency anomalies are log events that appear unexpectedly

frequent or rare during a given time interval. This may include

cases where components stop logging, or detection of attacks

that involve the execution of many events, e.g., vulnerability

scans.

• Correlation anomalies are log events that are expected to oc-

cur in pairs or groups but fail to do so. This may include simple

co-occurrence anomalies, i.e., two or more events that are ex-

pected to occur together, and implication anomalies, where one

or more events imply that some other event or events have

to occur, but not the other way round. For example, a web

server that logs an incoming connection should imply that cor-

responding log lines on the firewall have occurred earlier.

• Inter-arrival time anomalies are caused by deviating time in-

tervals between occurrences of log events. They are related to

correlation anomalies and may provide additional detection ca-

pabilities, e.g., an implied event is expected to occur within a

certain time window.

• Sequence anomalies are caused by missing or additional log

events as well as deviating orders in sequences of log events

that are expected to occur in certain patterns.

Outliers are based on single log line occurrences and are thus

the only type of anomalies detectable by static cluster algorithms.

All other types of anomalies require dynamic clustering techniques.

In addition, anomalies do not necessarily have to be detected using

strict rules that report every single violation. For example, event

correlations that are expected to occur only in 90% of all cases may

be analyzed with appropriate statistical tests.

3. Survey method

In this section we describe our approach to gather and analyze

the existing literature.

3.1. Set of criteria

In order to carry out the literature survey on log clustering ap-

proaches in a structured way, we initially created a set of evalua-

tion criteria that addresses relevant aspects of the research ques-

tions in more detail. The first block of questions in the set of cri-

teria covers purpose, applicability, and usability of the proposed

solutions:

P-1 What is the purpose of the introduced approach?

P-2 Does the method have a broad applicability or are there

constraints, such as requirements for specific logging stan-

dards?

P-3 Is the algorithm a commercial product or has been de-

ployed in industry?

P-4 Is the code of the algorithm publicly accessible?

The next group of questions focuses on the properties of the

introduced clustering algorithms:

C-1a What type of technique is applied for static clustering?

C-1b What type of technique is applied for dynamic clustering?

C-2 Is the algorithm fully unsupervised as opposed to algo-

rithms requiring detailed knowledge about the log structures

or labeled log data for training?

C-3 Is the clustering character-based?

C-4 Is the clustering word- or token-based?

C-5 Are log signatures or templates generated?

C-6 Does the clustering algorithm take dynamic features of log

lines (e.g., sequences) into account?

C-7 Does the algorithm generate new clusters online, i.e., in a

streaming manner, as opposed to approaches that allocate
log lines to a fixed set of clusters generated in a training

phase?

C-8 Is the clustering adaptive to system changes, i.e., are exist-

ing clusters adjusted over time rather than static constructs?

C-9 Is the algorithm designed for fast data processing?

C-10 Is the algorithm designed for parallel execution?

C-11 Is the algorithm deterministic?

Since we were aware that a large number of approaches aim at

nomaly detection, we dedicated the following set of questions to

his topic:

AD-1 Is the approach designed for the detection of outliers, i.e.,

static anomalies?

AD-2 Is the approach designed for the detection of dynamic

anomalies?

AD-3 Is the approach designed for the detection of cyber at-

tacks?

Finally, we defined questions that assess whether and how the

pproaches were evaluated in the respective articles:

E-1 Did the evaluation include quantitative measures, e.g., ac-

curacy or true positive rates?

E-2 Did the evaluation involve qualitative reviews, e.g., expert

reviews or discussions of cluster quality?

E-3 Was the algorithm evaluated regarding its time complexity,

i.e., running time and scalability?

E-4 Was at least one existing algorithm used as a benchmark

for validating the introduced approach?

E-5 Was real log data used as opposed to synthetically gener-

ated log data?

E-6 Is the log data used for evaluation publicly available?

The set of evaluation criteria was then completed for every rel-

vant approach. The process of retrieving these articles is outlined

n the following section.

.2. Literature search

The search for relevant literature was carried out in November

019. For this, three research databases were used: (i) ACM Digital

ibrary, 2 a digital library containing more than 50 0,0 0 0 full-text

rticles on computing and information technology, (ii) IEEE Xplore

igital Library, 3 a platform that enables the discovery of scientific

rticles within more than 4.5 million documents published in the

elds computer science, electrical engineering and electronics, and

iii) Google Scholar, 4 a web search engine for all kinds of academic

iterature.

The keywords used for searching on these platforms were “log

lustering” (29,383 results on ACM, 2,210 on IEEE, 3,050,0 0 0 on

oogle), “log event mining” (54,833 results on ACM, 621 on IEEE,

,240,0 0 0 on Google), “log data anomaly detection” (207,821 re-

ults on ACM, 377 on IEEE, 359,0 0 0 on Google). We did not make

ny restrictions regarding the date of publication. The titles and

bstracts of the first 300 articles retrieved for each query were ex-

mined and potentially relevant documents were stored for thor-

ugh inspection. It should be noted that a rather large amount of

alse positives were retrieved and immediately dismissed. The rea-

on why such unrelated articles appeared is that the keywords in

he queries were sometimes misinterpreted by the engines, e.g., re-

ults related to “logarithm” showed up when searching for “log”.

fter removing duplicates, this search yielded 207 potentially rele-

ant articles.

https://dl.acm.org/results.cfm
https://ieeexplore.ieee.org/Xplore/home.jsp
https://scholar.google.at/

M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739 5

c

c

w

t

o

a

2

i

s

l

p

t

s

p

p

B

t

l

d

i

N

p

w

(

a

a

o

c

c

v

d

a

a

m

W

f

d

4

a

c

a

a

g

4

fi

p

a

a

o

trieved events.
During closer inspection, several of these articles were dis-

arded. The majority of these dismissed approaches focused on

lustering numeric features extracted from highly structured net-

ork traffic logs rather than clustering the raw string messages

hemselves. This is a broad field of research and there exist numer-

us papers that apply well-known machine learning techniques for

nalyzing, grouping, and classifying the parsed data (Portnoy et al.,

001). Many other approaches are directed towards process min-

ng from event logs (Van der Aalst et al., 2004), which is an exten-

ive topic considered out of scope for our survey since it relies on

og traces rather than simple log data. Furthermore, we discarded

apers that introduce approaches for analysis and information ex-

raction from log data, but are not fitted for clustering log lines,

uch as terminology extraction (Saneifar et al., 2009) and com-

ression (Balakrishnan and Sahoo, 2006). We also dismissed ap-

roaches for clustering search engine query logs (Beeferman and

erger, 20 0 0) since they are designed to process keywords writ-

en by users rather than log lines generated by programs as out-

ined in Section 2.1 . Articles on protocol reverse engineering are

iscarded, because they are not primarily designed for process-

ng system log lines and surveys on this topic already exist, e.g.,

arayan et al. (2016) . Finally, we excluded articles that do not

ropose a new clustering approach, but apply existing algorithms

ithout modifications on different data or perform comparisons

e.g., Makanju et al., 2009a) as well as surveys. This also includes

rticles that propose algorithms for subsequent analyses such as

nomaly detection, alert clustering, or process model mining, that

perate on already clustered log data, but do not apply any log

lustering techniques themselves.

After this stage, 50 articles remained. A snowball search was

onducted with these articles, i.e., articles referenced in the rele-

ant papers as well as articles referencing these papers were in-

ividually retrieved. These articles were examined analogously and

dded if they were considered relevant. Eventually, we obtained 59

rticles and 2 tools that were analyzed with respect to the afore-

entioned characteristics stated in the set of evaluation criteria.

e used these criteria to group articles with respect to different

eatures and discover interesting patterns. The following section

iscusses the findings.

. Survey results

We arranged the articles into groups according to the properties

scertained in the set of evaluation criteria. We thereby derived

ommon features that could be found in several articles as well

s interesting concepts and ideas that stood out from the over-

ll strategies. In the following, we discuss these insights for every

roup of questions.
Table 1

Overview of main goals of reviewed approaches. Categorizations are not mutually exclus

Purpose of approach Approaches

Overview & filtering Aharon et al. (2009) , Aussel et al. (2018) , Christen

2005) , Reidemeister et al. (2011) , Gainaru et al. (2

Jayathilake et al. (2017) , Leichtnam et al. (2017) ,

Qiu et al. (2010) , Ren et al. (2018) , Salfner and Ts

Xu et al. (2009) , Zou et al. (2016)

Parsing & signature

extraction

Agrawal et al. (2019) , Chuah et al. (2010) , Du and

et al. (2017a,b) , Jayathilake et al. (2017) , Kimura e

Makanju et al. (2009b) , Messaoudi et al. (2018) , M

Nandi et al. (2016) , Ning et al. (2014) , Qiu et al. (

Tang et al. (2011) , Thaler et al. (2017) , Tovar ̌nák a

Wurzenberger et al. (2019) , Zhang et al. (2017) , Z

Outlier detection Juvonen et al. (2015) , Leichtnam et al. (2017) , Spl

Sequences & dynamic

anomaly detection

Aharon et al. (2009) , Chuah et al. (2010) , Du et al

et al. (2017a,b) , Jia et al. (2017) , Kimura et al. (20

Tschirpke (2008) , Splunk (Carasso, 2012), Stearley

Zhang et al. (2017) , Zhang et al. (2019) , Zou et al
.1. Purpose and applicability (P)

Four main categories of overall design goals (P-1) were identi-

ed during the review process:

• Overview & filtering . Log data is usually high-volume data that

is tedious to search and analyze manually. Therefore, it is

reasonable to reduce the total number of log messages pre-

sented to system administrators by removing log events that

are frequently repeating without contributing new or any other

valuable information. Clustering is able to provide such com-

pact representations of complex log files by filtering out most

logs that belong to certain (large) clusters, thus only leaving

logs that occur rarely or do not fit into any clusters to be

shown to administrators (Jain et al., 2009; Reidemeister et al.,

2011).

• Parsing & signature extraction . These approaches aim at the au-

tomatic generation of log event templates (cf. Section 2.1) for

parsing log lines. Parsers enable the allocation of log lines to

particular system events, i.e., log line classification, and the

structured extraction of parameters. These are important fea-

tures for subsequent analyses, such as clustering of event se-

quences or anomaly detection (He et al., 2017b; Wurzenberger

et al., 2019).

• Outlier detection . System failures, cyber attacks, or other adverse

system behavior generates log lines that differ from log lines

representing normal behavior regarding their syntax or param-

eter values. It is therefore reasonable to disclose single log lines

that do not fit into the overall picture of the log file. During

clustering, these log lines are identified as lines that have a

high dissimilarity to all existing clusters or do not match any

signatures (Juvonen et al., 2015; Wurzenberger et al., 2017b).

• Sequences & dynamic anomaly detection . Not all adverse system

behavior manifests itself as individual anomalous log lines, but

rather as dynamic or sequence anomalies (cf. Section 2.4). Thus,

approaches that group sequences of log lines or disclose tempo-

ral patterns such as frequent co-occurrence or correlations are

required. Dynamic clustering usually relies on line-based event

classification as an initial step and often has to deal with in-

terleaving processes that cause interrupted sequences (Aharon

et al., 2009; Jia et al., 2017).

Table 1 shows the determined classes for each reviewed ap-

roach. Note that this classification is not mutually exclusive, i.e.,

n approach may pursue multiple goals at the same time. For ex-

mple, He et al. (2017b) introduce an approach for the extraction

f log signatures and then perform anomaly detection on the re-
ive.

sen and Li (2013) , Jiang et al. (2008) , Joshi et al. (2014) , Li et al. (2017,

011) , Gurumdimma et al. (2015) , Hamooni et al. (2016) , Jain et al. (2009) ,

Makanju et al. (2009b) , Nandi et al. (2016) , Ning et al. (2014) ,

chirpke (2008) , Schipper et al. (2019) , Carasso (2012) , Taerat et al. (2011) ,

 Li (2016) , Fu et al. (2009) , Gainaru et al. (2011) , Hamooni et al. (2016) , He

t al. (2014) , Kobayashi et al. (2014) , Li et al. (2017) , Li et al. (2018) ,

enkovski and Petkovic (2017) , Mizutani (2013) , Nagappan and Vouk (2010) ,

2010) , Zhen (2014) , Shima (2016) , Taerat et al. (2011) , Tang and Li (2010) ,

nd Pitner (2019) , Vaarandi (2003, 2004) , Vaarandi and Pihelgas (2015) ,

hao and Xiao (2016) , Zulkernine et al. (2013)

unk (Carasso, 2012), Wurzenberger et al. (2017a,b)

. (2017) , Du and Cao (2015) , Fu et al. (2009) , Gurumdimma et al. (2015) , He

14) , Li et al. (2018) , Lin et al. (2016) , Nandi et al. (2016) , Salfner and

 (2004) , Vaarandi (2004) , Wang et al. (2018) , Xu et al. (2009) ,

. (2016)

6 M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739

i

J

s

a

s

o

s

a

w

r

L

(

p

p

a

l

o

g

r

k

s

k

(

c

k

o

k

d

d

t

f

a

c

p

a

g

W

t

t

T

d

d

t

t

b

k

a

r

4

r

c

p

p

t

t

m

D

s

c

q

T

p
As expected, most approaches aim at broad applicability and

do not make any specific assumptions on the input data (P-2).

Although some authors particularly design and evaluate their ap-

proaches in the context of a specific type of log protocol (e.g.,

router syslogs Qiu et al. (2010)), their proposed algorithms are also

suitable for any other logging standard. Only few approaches re-

quire artifacts specific to some protocol (e.g., Modbus (Wang et al.,

2018)) for similarity computation or prevent general applicability

by relying on labeled data (Reidemeister et al., 2011) or category

labels (e.g., start, stop, dependency, create, connection, report, re-

quest, configuration, and other (Li et al., 2005)) for model train-

ing, log level information (Du and Cao, 2015) for an improved log

similarity computation during clustering, or process IDs for link-

ing events to sequences (Lin et al., 2016). Other approaches impose

constraints such as the requirement of manually defined parsers

Tang and Li (2010) or access to binary/source code of the log gener-

ating system in order to parse logs using the respective print state-

ments (Schipper et al., 2019; Xu et al., 2009; Zhang et al., 2017).

We mentioned in Section 3 that we included two approaches

from non-academic literature: Splunk (Carasso, 2012) and Se-

quence (Zhen, 2014). Splunk is a commercial product (P-3) that of-

fers features that exceed log clustering and is deployed in numer-

ous organizations. However, also the authors of scientific papers

share success stories about real-world application in their works,

e.g., Lin et al. (2016) describe feedback and results following the

implementation of their approach in a large-scale environment and

Li et al. (2017) evaluate their approach within a case-study carried

out in cooperation with an international company. We appreciate

information about such deployments in real-world scenarios, be-

cause they validate that the algorithms are meeting the require-

ments for practical application. Finally, we could only find the orig-

inal source code of (He et al., 2017a; 2017b; Makanju et al., 2009b;

Messaoudi et al., 2018; Shima, 2016; Thaler et al., 2017; Vaarandi,

20 03; 20 04; Vaarandi and Pihelgas, 2015; Xu et al., 2009; Zhao and

Xiao, 2016; Zhen, 2014) online (P-4). In addition, several reimple-

mentations of algorithms provided by other authors exist. We en-

courage authors to make their code available open-source in order

to enable reproducibility.

4.2. Clustering techniques (C)

In the following, we explore different types of applied cluster-

ing techniques with respect to their purpose, their applicability in

live systems, and non-functional requirements.

4.2.1. Types of static clustering techniques

One of the most interesting findings of this research study

turned out to be the large diversity of proposed clustering tech-

niques (C-1a, C-1b). Considering static clustering approaches, a ma-

jority of the approaches employ a distance metric that determines

the similarity or dissimilarity of two or more strings. Based on

the resulting scores, similar log lines are placed in the same clus-

ters, while dissimilar lines end up in different clusters. The cal-

culation of the distance metric may thereby be character-based,

token-based or a combination of both strategies (C-3, C-4). While

token-based approaches assume that the log lines can reasonably

be split by a set of predefined delimiters (most frequently, only

white space is used as a delimiter), character-based approaches

are typically more flexible, but also computationally more ex-

pensive. For example, Juvonen et al. (2015) and Christensen and

Li (2013) compute the amount of common n-grams between two

lines in order to determine their similarity. Du and Cao (2015) ,

Ren et al. (2018) , Salfner and Tschirpke (2008) , and Wurzenberger

et al. (2017a,b) use the Levenshtein metric to compute the

similarity between two lines by counting the character inser-

tions, deletions and replacements needed to transform one string
nto the other. Taerat et al. (2011) , Gurumdimma et al. (2015) ,

ain et al. (2009) , Zou et al. (2016) , and Fu et al. (2009) employ a

imilar metric based on the words of a line rather than its char-

cters. Another simple token-based approach for computing the

imilarity between two log lines is by summing up the amount

f matching words at each position. In mathematical terms, this

imilarity between log lines a and b with their respective tokens

 1 , a 2 , ..., a n and b 1 , b 2 , ..., b m

is computed by
∑ min (n,m)

i =1
I (a i , b i) ,

here I (a i , b i) is 1 if a i is equal to b i and 0 otherwise. This met-

ic is frequently normalized (Aharon et al., 2009; He et al., 2017b;

i et al., 2018; Mizutani, 2013; Ning et al., 2014) and weighted

 Hamooni et al., 2016; Tang and Li, 2010). Joshi et al. (2014) use bit

atterns of tokens to achieve a similar result. Li et al. (2017) com-

ute the similarity between log lines after transforming them into

 tree-like structure. Du and Cao (2015) also consider the log

evel (e.g., INFO, WARN, ERROR) relevant for clustering and point

ut that log lines generated on a different level should not be

rouped together. Finally, token vectors that emphasize the occur-

ence counts of words rather than their positions (i.e., the well-

nown bag of words model) may be used to compute the cosine

imilarity (Carasso, 2012; Lin et al., 2016; Shima, 2016) or apply

-means clustering (Aussel et al., 2018).

Not all approaches employ distance or similarity metrics. SLCT

 Vaarandi, 2003) is one of the earliest published approaches for log

lustering. The idea behind the concept of SLCT is that frequent to-

ens (i.e., tokens that occur more often than a user-defined thresh-

ld) represent fixed elements of log templates, while infrequent to-

ens represent variables. Despite being highly efficient, one of the

ownsides of SLCT is that clustering requires three passes over the

ata: The first pass over all log lines retrieves the frequent tokens,

he second pass generates cluster templates by identifying these

requent tokens in each line and filling the gaps with wildcards,

nd the third pass reports cluster templates that represent suffi-

iently many log lines. Allocating the log lines to clusters is accom-

lished during the second pass, where each log line is assigned to

n already existing or newly generated template.

Density-based clustering appears to be a natural strategy for

enerating trees (Qiu et al., 2010; Tovar ̌nák and Pitner, 2019;

urzenberger et al., 2019; Zhao and Xiao, 2016), i.e., data struc-

ures that represent the syntax of log data as sequences of nodes

hat branch into subsequences to describe different log events.

hereby, nodes represent fixed or variable tokens and may even

ifferentiate between data types, e.g., numeric values or IP ad-

resses. The reason why all of the reviewed approaches leveraging

rees use density-based techniques is likely attributable to the way

rees are built: Log messages are processed token-wise from their

eginning to their end; identical tokens in all lines are frequent to-

ens that result in fixed nodes, tokens with highly diverse values

re infrequent and result in variable nodes, and cases in between

esult in branches of the tree.

.2.2. Types of dynamic clustering techniques

Several approaches pursue the clustering of log sequences

ather than only grouping single log lines (C-6). Thereby, pro-

ess IDs that uniquely identify related log lines may be ex-

loited to retrieve the sequences (Lin et al., 2016). For exam-

le, Fu et al. (2009) use these IDs to build a finite state au-

omaton describing the execution behavior of the monitored sys-

em. However, logs that do not contain such process IDs require

echanisms for detecting relations between identified log events.

u and Cao (2015) and Gurumdimma et al. (2015) first cluster

imilar log lines, then generate sequences by grouping events oc-

urring in time windows and finally cluster the identified se-

uences in order to derive behavior patterns. Similarly, Salfner and

schirpke (2008) group generated events that occur within a

redefined inter-arrival time and cluster the sequences with a

M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739 7

h

i

e

r

i

t

2

i

t

s

L

q

fl

t

2

l

t

A

i

f

o

1

s

a

q

c

r

s

u

a

(

f

(

Z

l

k

2

f

H

T

b

Z

(

i

a

a

p

I

W

d

J

c

t

d

m

a

a

e

d

4

e

r

T

Fig. 4. Relative frequencies of static clustering techniques used in the reviewed ar-

ticles.

r

a

w

a

t

o

m

L

o

s

u

o

2

C

k

p

p

p

(

t

a

u

t

f

s

t

b

g

T

w

n

c

i

c

d

s

w

a

d

m

Z

a

p

o

t
idden semi-Markov Model. Also Qiu et al. (2010) measure the

nter-arrival time of log lines for clustering periodically occurring

vents and additionally group the events by derived correlation

ules. Kimura et al. (2014) derive event co-occurrences by factor-

zing a 3-dimensional tensor consisting of the previously iden-

ified templates, hosts and time windows. DeepLog (Du et al.,

017) extends Spell (Du and Li, 2016) by computing probabil-

ties for transitions between the identified log events in order

o construct a workflow model. Jain et al. (2009) group time-

eries derived from cluster appearances in a hierarchical fashion.

ogSed (Jia et al., 2017) and OASIS (Nandi et al., 2016) analyze fre-

uent successors and predecessors of lines for mining a control

ow graph. After first categorizing log messages using probabilis-

ic models (Li et al., 2005) and distance-based strategies (Li et al.,

017), the authors determine the temporal relationships between

og events by learning the distributions of their lag intervals, i.e.,

ime periods between events. Other than the previous approaches,

haron et al. (2009) assume that the order of log lines is mean-

ngless and their algorithm PARIS thus identifies log events that

requently occur together within certain time windows regardless

f their order.

We summarize the results in Table 2 . For columns C-1a and C-

b, we coded distance-based strategies as (1) and density-based

trategies as (2). Note that for static clustering, distances are usu-

lly measured between log lines and densities refer to token fre-

uencies, while for dynamic clustering techniques, distances are

omputed between time-series of event occurrences and densities

efer to event frequency counts. Other identified strategies used for

tatic and dynamic clustering are (3) Neural Networks, which are

seful for signature extraction (Kobayashi et al., 2014; Menkovski

nd Petkovic, 2017; Thaler et al., 2017) and event classification

 Ren et al., 2018) by Natural Language Processing (NLP) as well as

or detecting sequences in the form of Long Short-Term Memory

LSTM) recurrent neural networks (Du et al., 2017; Li et al., 2018;

hang et al., 2019), (4) iterative partitioning, where groups of log

ines are recursively split into subgroups according to particular to-

en positions (Gainaru et al., 2011; He et al., 2017a; Makanju et al.,

009b), (5) Longest Common Substring (LCS), which is a measure

or the similarity of log lines (Agrawal et al., 2019; Du and Li, 2016;

e et al., 2017a; Jayathilake et al., 2017; Reidemeister et al., 2011;

ang et al., 2011) or sequences of log events (Wang et al., 2018), (6)

inary/source code analysis (Schipper et al., 2019; Xu et al., 2009;

hang et al., 2017), (7) genetic algorithms (Messaoudi et al., 2018),

8) frequent itemset mining (Vaarandi, 2004), (9) statistical model-

ng (Du et al., 2017; Kimura et al., 2014; Li et al., 2017; 2005; 2018),

nd (10) graph community extraction (Leichtnam et al., 2017). In

ddition, a number of approaches employ (11) heuristics for re-

lacing tokens with wildcards if they match specific patterns, e.g.,

P addresses or numeric values that most likely represent IDs.

hile such rules are frequently only used for preprocessing log

ata before clustering, the approaches by Chuah et al. (2010) and

iang et al. (2008) suggest that heuristics alone may be suffi-

ient to generate templates. Fig. 4 shows a visual overview of

he techniques used in static log clustering. The plot shows that

istance-based and density-based techniques are the most com-

on techniques, being used in more than half of all reviewed

pproaches. Dynamic clustering techniques are less diverse: Most

pproaches apply statistical methods to generate links between

vents and rely on event count matrices for grouping and anomaly

etection.

.2.3. Applicability in live systems

Almost all approaches employ self-learning techniques that op-

rate in an unsupervised fashion, i.e., no labeled training data is

equired for building the model of normal system behavior (C-2).

his corresponds to the mentioned ambition of proposing algo-
ithms that are mostly independent of the log structure and allow

utomatic processing with minimal human interference. However,

e identified some approaches that do not follow this tendency

nd need labeled data for training: Kobayashi et al. (2014) use

emplates that define which tokens in log messages are fixed

r variable, Thaler et al. (2017) also use such templates but

ark every character of the log message as fixed or variable,

i et al. (2005) use categorical states that describe the type

f log line, and (Reidemeister et al., 2011) use labels that de-

cribe types of failures. Other approaches rely on extensive man-

al work preceding clustering, including the manual extraction

f relevant attributes into a common format (Leichtnam et al.,

017) or the definition of parsers (Tang and Li, 2010). Similarly,

huah et al. (2010) and Zou et al. (2016) incorporate domain

nowledge of the log structure in the clustering procedure.

Most articles lack precise investigations of running time com-

lexities and upper bounds due to algorithmic complexity and

arametric dependencies. However, we observed that some of the

roposed approaches are particularly designed for online clustering

C-7), while others pursue offline or batch clustering. Online clus-

ering means that at any given point in time during the clustering,

ll the processed log lines are already allocated to clusters. This

sually implies that the running time grows at most linearly with

he number of processed lines, which is an important property

or many real-world applications where log lines are processed in

treams rather than limited sets. Note that an allocation of lines

o existing clusters in a streaming manner is almost always possi-

le and we therefore only considered approaches that are able to

enerate new clusters on the fly as capable of online-processing.

ypically, the reviewed online algorithms proceed in the following

ay: First, an empty set of clusters is initialized. Then, for each

ewly processed log line, the algorithm attempts to find a fitting

luster in the set of clusters. If such a cluster is found, the log line

s allocated to it; otherwise, a new cluster containing that line is

reated and added to the set of clusters. This step is repeated in-

efinitely (Aharon et al., 2009).

In addition to generating new clusters, approaches that we con-

ider adaptive are also able to modify existing cluster templates

hen new log lines are received (C-8). Such adaptive approaches

re in particular useful when being employed in systems that un-

ergo frequent changes, e.g., software upgrades or source code

odifications that affect the logging behavior (Gainaru et al., 2011;

hang et al., 2019). While non-adaptive approaches usually require

 complete reformation of all clusters and templates, adaptive ap-

roaches dynamically adjust to the new baseline without the need

f instantly “forgetting” all previously learned patterns. Approaches

hat do not aim at the generation of log templates may achieve

8 M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739

Table 2

Assessed properties regarding clustering techniques assigned to each approach.

Approach C-1a C-1b C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10

Agrawal et al. (2019) (Logan) 5, 11 � � � � � � �

Aharon et al. (2009) (PARIS) 1 1 � � � � � �

Aussel et al. (2018) 2, 11 � � ~

Christensen and Li (2013) 1 � � � � ~ �

Chuah et al. (2010) (Fdiag) 11 2, 9 ~ � � � � ~

Du and Li (2016) (Spell) 1, 5 � � � � � �

Du et al. (2017) (DeepLog) Du and Li (2016) 2, 3, 9 � � � � ~ ~

Du and Cao (2015) 1, 11 1, 2 � � �

Fu et al. (2009) 1, 11 9 � � � � � �

Gainaru et al. (2011) (HELO) 4 � � � � � ~

Gurumdimma et al. (2015) 1 1, 2, 9 � � �

Hamooni et al. (2016) (LogMine) 1 � � � � � � �

He et al. (2017a) (POP) 4, 5 � � � � �

He et al. (2017b) (Drain) 1 � � � � � �

Jain et al. (2009) 1 1, 2 � � � � � ~

Jayathilake et al. (2017) 5 � � � �

Jia et al. (2017) (LogSed) Vaarandi (2003) 2, 9 � � � � � � �

Jiang et al. (2008) 11 � � � �

Joshi et al. (2014) 1 � � � � � �

Juvonen et al. (2015) 1 � � �

Kimura et al. (2014) 9 9 � � � � ~

Kobayashi et al. (2014) 3 � �

Leichtnam et al. (2017) (STARLORD) 10 �

Li et al. (2005) 9 � � ~

Li et al. (2017) (FLAP) 1 9 � � � � ~

Li et al. (2018) 1, 11 3, 9 � � � � � � ~

Lin et al. (2016) (LogCluster) Fu et al. (2009) 1 � � �

Makanju et al. (2009b) (IPLoM) 4 � � � �

Menkovski and Petkovic (2017) 1, 3 � � � ~

Messaoudi et al. (2018) (MoLFI) 7 � � � ~

Mizutani (2013) (SHISO) 1 � � � � � � �

Nagappan and Vouk (2010) 2 � � � �

Nandi et al. (2016) (OASIS) 1, 2, 5 9 � � � � � � � �

Ning et al. (2014) (HLAer) 1 � � � � � �

Qiu et al. (2010) 2, 11 9 � � � � ~

Reidemeister et al. (2011) 1, 2, 5 � � � �

Ren et al. (2018) 1, 3, 11 � � ~

Salfner and Tschirpke (2008) 1 9 � � � � ~

Schipper et al. (2019) 6 � � � � ~

Zhen (2014) 11 � ~ � � � � �

Shima (2016) (LenMa) 1 � � � � � ~

Splunk Carasso (2012) 1 � � � �

Stearley (2004) (Teiresias) 2, Vaarandi (2003) 9 � � � �

Taerat et al. (2011) (Baler) 1 � � � � ~

Tang and Li (2010) (LogTree) 1 ~ � � � �

Tang et al. (2011) (LogSig) 5 � � � �

Thaler et al. (2017) 3 � � ~

Tovar ̌nák and Pitner (2019) 2, Nagappan and Vouk (2010) � � � � �

Vaarandi (2003) (SLCT) 2 � � � �

Vaarandi (2004) (LogHound) Vaarandi (2003) 8 � � � � �

Vaarandi and Pihelgas (2015) (LogCluster) 2 � � � �

Wang et al. (2018) 1 5 � � � � ~

Wurzenberger et al. (2017a) 1 � � �

Wurzenberger et al. (2017b) 1 � � � �

Wurzenberger et al. (2019) (AECID-PG) 2 � � � ~

Xu et al. (2009) 6 2, 9 � � � � � �

Zhang et al. (2017) (GenLog) 6 6 � � � � �

Zhang et al. (2019) (LogRobust) 2, 11, He et al. (2017b) 3 � � � � � � ~

Zhao and Xiao (2016) 2, 11 � � �

Zou et al. (2016) (UiLog) 1 9 ~ � � � � ~ ~

Zulkernine et al. (2013) (CAPRI) 2 9 � � � � � � �

p

i

t

d

t

l

(

2

p

adaptive behavior by only considering the most recently added log

lines as relevant for clustering (Christensen and Li, 2013).

4.2.4. Non-functional requirements

The further columns provide information on whether the ap-

proaches were particularly designed for high efficiency (C-9) or

parallel execution (C-10). Note that we considered a comparative

evaluation on the efficiency of all algorithms out of scope for this

survey, but rather assessed whether the authors particularly de-

signed the algorithm for high log throughput, for example, by em-
loying data structures or methods that enable fast data process-

ng. In general, such an evaluation is difficult, because the running

ime often depends on the type of log data, parameter settings and

ata preprocessing.

Finally, we assessed that most algorithms operate in a de-

erministic fashion (C-11). However, some exceptions particu-

arly make use of randomization, for example genetic algorithms

 Messaoudi et al., 2018), randomized hash functions (Joshi et al.,

014), randomly initialized fields (Juvonen et al., 2015) and all ap-

roaches that rely on neural networks.

M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739 9

4

p

a

d

4

a

a

p

w

t

r

o

b

d

l

t

o

t

g

d

t

a

t

n

(

c

f

i

s

fi

t

J

m

s

w

4

t

a

p

f

t

o

c

e

w

r

t

r

f

b

L

w

t

L

i

u

D

k

t

i

t

a

C

t

o

f

l

t

m

m

r

J

d

a

e

d

o

D

n

t

f

f

4

t

c

t

n

e

(

r

m

r

t

(

4

a

d

s

w

4

k

T

d

fi

v

p

i

P

c

(

a

i

w

a

a
.3. Anomaly Detection (AD)

According to our set of evaluation criteria, we group the ap-

roaches with respect to their ability to detect static or dynamic

nomalies and discuss the origin of anomalies that are typically

etected in the reviewed articles.

.3.1. Static outlier detection

As mentioned before, not all reviewed articles primarily pursue

nomaly detection (cf. Table 1) and thus do not include discussions

bout the effectiveness of their detection capabilities. However, the

atterns or groups of log lines resulting from the clustering can al-

ays be used for the detection of anomalies. For example, log lines

hat are very dissimilar to all clusters or do not match any of the

etrieved patterns are considered outliers (AD-1). New and previ-

usly unseen lines are usually regarded as suspicious and should

e reported. In addition, clusters that are unusually small or very

istant to all other clusters may indicate anomalous groups of log

ines. Clearly, domain knowledge is required to interpret the re-

rieved lines and Hamooni et al. (2016) add that a keyword search

n the new logs is an effective measure for system administrators

o locate and interpret the occurred event.

SLCT (Vaarandi, 2003) and LogCluster (Vaarandi and Pihel-

as, 2015) allocate all log lines in an outlier cluster if they

o not match any of the generated log templates, i.e., pat-

erns that represent each cluster. They used logs collected from

 mail server and found that the identified outliers correspond

o errors and unauthorized access attempts. In a similar man-

er, Wurzenberger et al. (2017b) , Stearley (2004) and Splunk

 Carasso, 2012) identify rare log lines that do not end up in large

lusters as outliers. HLAer Ning et al. (2014) offers two possibilities

or outlier detection: an online method based on pattern match-

ng as well as an offline method that uses the same similarity

core used for clustering. Similarly, Wurzenberger et al. (2017a) de-

nes a similarity function for outlier detection and further men-

ions that small clusters contain potentially interesting log lines.

uvonen et al. (2015) detect outliers without the need for pattern

atching. They inject cross-site scripting (XSS) attacks and the re-

ulting log lines are located far away from all the other log lines

hen being projected into an euclidean space.

.3.2. Dynamic anomaly detection

Other than detecting outliers, some algorithms aim at the de-

ection of failure patterns (AD-2). Thereby, the retrieval of distinct

nd expressive descriptors is regarded as the main goal. For exam-

le, Baler (Taerat et al., 2011) identifies patterns corresponding to

ailure modes of the system CPU and memory errors. Such fault

ypes are also detected by Zou et al. (2016) who group alerts that

ccur within time windows. Categories of these alerts thereby in-

lude errors caused by the network, failed authentications, periph-

ral devices and the web engine.

In addition, some approaches support root-cause analysis,

here the identification of log events occurring in the past that

elate to detected failures is pursued. Thereby, algorithms utilize

he learned temporal dependencies between log events for such

easoning. Chuah et al. (2010) and Kimura et al. (2014) particularly

ocus on root-cause analysis and identify temporal dependencies

y correlating event occurrences within time windows. However,

i et al. (2017, 2005) point out that a correct selection of the time

indow sizes is often difficult, and therefore propose a solution

hat relies on lag time distributions rather than time windows.

It is non-trivial to derive dynamic properties from clusterings.

ogTree (Tang and Li, 2010) supports manual detection by display-

ng patterns of cluster appearances. In their case study, misconfig-

rations in HTML files were detected. For an analytical detection,

rain (He et al., 2017b) gradually fills an event count matrix that
eeps track of the number of occurrences of each log event. They

hen use principal component analysis for detecting unusual points

n the resulting matrix. Similarly, Xu et al. (2009) use PCA for de-

ecting anomalies in high-dimensional message count vectors and

dditionally consider state variables for filling the matrix. Du and

ao (2015) detect anomalous system behavior by applying a dis-

ance metric on time-series derived from event frequencies.

Beside unusual frequencies of occurring events, the execution

rder of certain log line types may be used as another indicator

or anomalies. Zulkernine et al. (2013) derive correlation rules from

ine patterns that frequently occur together. Fu et al. (2009) learn

he execution order of events and detect deviations from this

odel as work flow errors. In addition, they identify perfor-

ance issues by measuring the execution times of newly occur-

ing log sequences and compare them with the learned behavior.

ia et al. (2017) also detect unknown logs as redundancy failures,

eviations from execution orders as sequence anomalies and devi-

tions from interval times as latency anomalies. Beside sequence

rrors, Nandi et al. (2016) make use of a control flow-graph in or-

er to also detect changes of branching distributions, i.e., changes

f occurrence probabilities of certain log events in sequences.

eepLog (Du et al., 2017) trains a Long Short-Term Memory (LSTM)

eural network with such workflow transition probabilities and au-

omatically detects any deviations from the learned behavior. A dif-

erent approach is taken by Gurumdimma et al. (2015) , who detect

ailure patterns of sequences rather than single events.

.3.3. Cyber attack detection

Finally, we noted that although many approaches are directed

owards anomaly detection, these anomalies are almost always

onsidered to be random or naturally occurring failures rather than

argeted cyber attacks (AD-3), such as denial-of-service and scan-

ing attacks (Du et al., 2017; Wang et al., 2018), injections (Juvonen

t al., 2015; Wurzenberger et al., 2017b), or unauthorized accesses

 Reidemeister et al., 2011; Vaarandi, 2003). We assume that the

easons for this trend are manifold: (i) Failures may be more com-

on than attacks in the considered systems and thus pose a higher

isk, (ii) attacks are implicitly assumed to produce artifacts similar

o failures and can thus be detected using the same methods, and

iii) lack of log files containing cyber attacks for evaluation.

.4. Evaluation (E)

In the following, we investigate the procedures of evaluating

pproaches presented in the reviewed papers. In particular, we

iscuss what kind of evaluation techniques were applied to as-

ess fulfillment of functional and non-functional requirements, and

hether the results are reproducible.

.4.1. Evaluation techniques

Every reviewed clustering approach includes at least some

ind of experiments and discussion of results. As shown in

able 3 , a majority of authors use quantitative metrics for vali-

ating and evaluating their proposed concepts (E-1). We identi-

ed three main approaches to quantitative evaluation: (i) Unsuper-

ised methods that do not require a labeled ground truth for com-

arison. There exist various possibilities for estimating the qual-

ty of the clustering in an unsupervised fashion. Menkovski and

etkovic (2017) show that the consistency of the clustering

an be assessed by measures such as the Silhouette Coefficient

 Rousseeuw, 1987), which measures the relation between inter-

nd intra-cluster distances. Kimura et al. (2014) estimate the qual-

ty of the log templates heuristically, by assuming that all tokens

ithout numbers should end up as fixed elements in the gener-

ted templates. This measure is easy to compute, but has the dis-

dvantages that it may produce incorrect results in cases where

10 M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739

Table 3

Assessed properties regarding the evaluation carried out in each approach.

Approach E-1 E-2 E-3 E-4 E-5 E-6

Agrawal et al. (2019) (Logan) � � � � �

Aharon et al. (2009) (PARIS) � � �

Aussel et al. (2018) � � �

Christensen and Li (2013) � ~ � �

Chuah et al. (2010) (Fdiag) � � �

Du and Li (2016) (Spell) � � � � �

Du et al. (2017) (DeepLog) � � �

Du and Cao (2015) � � � �

Fu et al. (2009) � � �

Gainaru et al. (2011) (HELO) � � � �

Gurumdimma et al. (2015) � � � �

Hamooni et al. (2016) (LogMine) � � � �

He et al. (2017b) (POP) � � � � �

He et al. (2017a) (Drain) � � � � �

Jain et al. (2009) � � � �

Jayathilake et al. (2017) �

Jia et al. (2017) (LogSed) � � � �

Jiang et al. (2008) � � � � �

Joshi et al. (2014) � � �

Juvonen et al. (2015) � �

Kimura et al. (2014) � � �

Kobayashi et al. (2014) � � � �

Leichtnam et al. (2017) (STARLORD) � � �

Li et al. (2005) � � �

Li et al. (2017) (FLAP) � � � �

Li et al. (2018) � � �

Lin et al. (2016) (LogCluster) � � � �

Makanju et al. (2009b) (IPLoM) � � � �

Menkovski and Petkovic (2017) � � � � �

Messaoudi et al. (2018) (MoLFI) � � �

Mizutani (2013) (SHISO) � � � � �

Nagappan and Vouk (2010) � �

Nandi et al. (2016) (OASIS) � � �

Ning et al. (2014) (HLAer) � � � � �

Qiu et al. (2010) � � �

Reidemeister et al. (2011) � �

Ren et al. (2018) � � � �

Salfner and Tschirpke (2008) � �

Schipper et al. (2019) � � �

Zhen (2014)

Shima (2016) (LenMa) � � � � �

Carasso (2012)

Stearley (2004) (Teiresias) � � �

Taerat et al. (2011) (Baler) � � �

Tang and Li (2010) (LogTree) � � � � �

Tang et al. (2011) (LogSig) � � � �

Thaler et al. (2017) � �

Tovar ̌nák and Pitner (2019) � � � � � �

Vaarandi (2003) (SLCT) � �

Vaarandi (2004) (LogHound) � �

Vaarandi and Pihelgas (2015) (LogCluster) � � �

Wang et al. (2018) �

Wurzenberger et al. (2017a) � �

Wurzenberger et al. (2017b) �

Wurzenberger et al. (2019) (AECID-PG) � � � �

Xu et al. (2009) � � � �

Zhang et al. (2017) (GenLog) � � � � �

Zhang et al. (2019) (LogRobust) � � �

Zhao and Xiao (2016) � � �

Zou et al. (2016) (UiLog) � � � � �

Zulkernine et al. (2013) (CAPRI) � � � �

t

e

p

e

e

p

d

m

s

o
the heuristics do not apply and that it is only reasonably applica-

ble for log files where such heuristics are known to fit the data.

Alternatively, Li et al. (2017) make use of event coverage during

clustering, a measure for the goodness of a set of cluster descrip-

tors with respect to their similarities to all log lines. The problem

with such strategies is that it is typically difficult to obtain inter-

pretable and comparable results and thus most of the reviewed

approaches do not take unsupervised evaluation into considera-

tion. (ii) The grouped log lines are compared to a manually crafted

ground truth of cluster allocations. This allows the computation of
he accuracy, precision, recall and F-score of the approach. Differ-

nt strategies for computing these metrics are possible. For exam-

le, He et al. (2017b) count two log lines generated by the same

vent grouped in the same cluster as true positive; two lines gen-

rated by different events grouped in the same cluster as false

ositive and two lines generated by the same event grouped in

ifferent clusters as false negative. Contrary to such a line-based

easure, Du and Li (2016) evaluate their approach with a more

trict focus on clusters. They measure the accuracy by the number

f lines allocated to correct clusters, where a cluster is counted

M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739 11

c

g

b

a

r

t

e

a

w

o

c

t

a

r

H

o

p

a

p

c

a

t

c

a

T

l

e

s

a

t

(

t

t

o

m

p

c

f

t

b

o

w

(

e

4

f

c

3

l

a

M

4

m

(

t

s

J

b

o

N

Fig. 5. Relative frequencies of benchmarks used for evaluation.

c

p

g

(

v

s

e

b

e

r

l

m

s

L

2

2

M

v

a

2

s

2

2

a

p

i

l

r

s

e

w

i

n

4

fi

s

o

s

5 https://www.usenix.org/cfdr-data .
6 http://iiis.tsinghua.edu.cn/ ∼weixu/sospdata.html .
7 http://log-sharing.dreamhosters.com/ .
8 http://cs.queensu.ca/ ∼farhana/supporting-pages/capri.html .
9 https://www.cs.umd.edu/hcil/varepository/VAST%20Challenge%202011/

challenges/MC2%20-%20Computer%20Networking%20Operations/ .
orrect if all and only all log lines of a particular type from the

round truth are allocated to the same cluster. The results of line-

ased and cluster-based evaluations can be very different: Consider

 clustering result containing one large cluster. A line-based accu-

acy measure will show good results as long as many log lines of

hat type end up in the same clusters, even if a portion of the lines

nd up in other clusters or a few misclassifications occurred. The

ccuracy measured in cluster-based evaluation on the other hand

ill indicate poor results when only one or few misclassifications

ccur in that cluster, since this causes that all contained lines are

onsidered as incorrectly classified. Kobayashi et al. (2014) measure

he accuracy by inspecting the templates rather than the associ-

ted log lines. In particular, they count the number of fields cor-

ectly identified as fixed or variable in each generated log template.

amooni et al. (2016) apply a similar approach but also take types

f fields, e.g., string, number or IP, into account. This approach ap-

ears particularly useful when obtaining a ground truth or labeling

ll log lines is not possible, but the number and structure of ex-

ected cluster templates can be determined. (iii) The quality of the

lustering is assessed by its ability to detect anomalies. In this case,

 ground truth of known anomalies is required for counting the

rue positives (correctly identified anomalies), false positives (in-

orrectly identified anomalies), false negatives (missed anomalies),

nd true negatives (correctly classified non-anomalous instances).

he advantage of this method is that it does not require labels for

og lines or knowledge about all clusters. However, anomaly-based

valuation relies on a data set containing anomalies and only mea-

ures the quality of the clustering indirectly, i.e., it is possible that

n inappropriate detection mechanism is responsible for a poor de-

ection accuracy even though the clustering is of good quality.

A number of approaches also qualitatively assess the clustering

E-2). This is especially common for approaches that aim at the ex-

raction of log signatures. For example, Taerat et al. (2011) discuss

he appropriateness of the number of clusters and outliers based

n domain knowledge about the used log data. Moreover, they

anually check whether unnecessary signatures exist or generated

atterns are too general and thus lead to overgrouped clusters. In

ases where a ground truth of expected signatures is available, dif-

erences and overlaps between the generated and expected pat-

erns can be determined (e.g., Fu et al., 2009). Because of the am-

iguities of what is considered an appropriate clustering, experts

r administrators with domain knowledge about the specific real-

orld use cases are occasionally consulted for labeling the data

 Xu et al., 2009) or validating the results (Aharon et al., 2009; Li

t al., 2017; 2005; Lin et al., 2016; Qiu et al., 2010; Stearley, 2004).

.4.2. Evaluation of Non-functional Requirements

Given that many approaches are particularly designed for

ast processing of log lines, a high number of articles also in-

lude an empirical evaluation of running time requirements (E-

). Thereby, both the total time necessary to process a specific

og file Messaoudi et al. (2018) as well as the scalability of the

lgorithm with respect to the number of processed log lines

izutani (2013) are relevant characteristics.

.4.3. Comparisons and Reproducibility

Most evaluations include thorough comparisons with one or

ultiple widely-applied approaches (E-4). For example, HLAer

 Ning et al., 2014) is compared by Hamooni et al. (2016) with

heir algorithm LogMine regarding the accuracy of the generated

ignatures and SLCT Vaarandi (2003) is used as a benchmark by

oshi et al. (2014) for comparing the quality of the clustering and

y Stearley (2004) regarding outlier detection. Fig. 5 shows an

verview of approaches that are frequently used as benchmarks.

ote that it is common that more than one approach is used for
omparison, in which case the approaches were added in pro-

ortionally. As visible in the plot, the most frequently used al-

orithms for benchmarking are SLCT (Vaarandi, 2003) and IPLoM

 Makanju et al., 2009b). It is also remarkable that all approaches

isible in the plot are mainly used for signature extraction. This

uggests that there exist more renowned standards for signature

xtraction than for other clustering approaches. It must however

e noted that a majority of the reviewed articles employ signature

xtraction and thus dominate this statistic.

Most of the articles were evaluated with logs collected from

eal-world computer systems (E-5). Due to confidentiality of these

ogs, not all of them are publicly available (E-6). The most com-

on open-source data sets used in the reviewed articles are the

upercomputer logs 5 Blue Gene/L, Thunderbird, RedStorm, Spirit,

iberty, etc. (Agrawal et al., 2019; Chuah et al., 2010; Du and Li,

016; Du and Cao, 2015; Gainaru et al., 2011; Gurumdimma et al.,

015; He et al., 2017a; 2017b; Jain et al., 2009; Jiang et al., 2008;

akanju et al., 2009b; Messaoudi et al., 2018; Ning et al., 2014; To-

ar ̌nák and Pitner, 2019; Wurzenberger et al., 2019); other sources

re Hadoop Distributed File System (HDFS) logs 6 (Agrawal et al.,

019; Aussel et al., 2018; Du et al., 2017; He et al., 2017b; Mes-

aoudi et al., 2018; Tovar ̌nák and Pitner, 2019; Wurzenberger et al.,

019; Xu et al., 2009; Zhang et al., 2019), system logs 7 (Mizutani,

013; Shima, 2016), and web logs 8 (Zulkernine et al., 2013). The

rtificially generated network logs data 9 used by Du et al. (2017) is

articularly interesting, because it comes with a ground truth and

nformation on the attacks that were injected during the data col-

ection. Fig. 6 shows an overview of log data sources used in the

eviewed papers. Note that approaches that use multiple logs, e.g.,

upercomputer and HDFS logs, were added in proportionally, and

valuation on non-available data (”Private data“) was only counted

hen there was no evaluation on publicly available data. As vis-

ble in the plot, almost 60% of the reviewed approaches involve

on-reproducible evaluation.

.5. Discussion

Based on the results outlined in the previous section, several

ndings can be derived. In the following, we discuss identified is-

ues with the overall problem of clustering log data, disadvantages

f employed clustering techniques, and frequently encountered is-

ues in evaluation.

https://www.usenix.org/cfdr-data
http://iiis.tsinghua.edu.cn/~weixu/sospdata.html
http://log-sharing.dreamhosters.com/
http://cs.queensu.ca/~farhana/supporting-pages/capri.html
https://www.cs.umd.edu/hcil/varepository/VAST%20Challenge%202011/challenges/MC2%20-%20Computer%20Networking%20Operations/

12 M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739

Fig. 6. Relative frequencies of log data used for evaluation.

d

r

t

t

s

t

t

e

i

4

a

f

r

n

c

e

a

t

l

m

t

(

I

a

H

r

s

o

f

g

o

M

h

o

r

l

w

m

p

a

s

f

c

s

t

a

W

u

t

c

p

5

i

e

fi

10 https://github.com/logpai .
4.5.1. Problem domains

We did not expect to see such a high number of articles primar-

ily focused on the extraction and generation of signatures, while

comparatively few articles are oriented towards anomaly detec-

tion. Especially static outlier detection, i.e., the identification of

log lines with unusual structure or content, appears to be more

of a by-product rather than a main feature of signature generat-

ing approaches. This may of course be attributable to the fact that

such a detection is often a trivial subsequent step to any clustering

method. On the other hand, dynamic anomaly detection such as

correlation analysis and especially the identification of sequences

of log lines appears to be of a higher relevance and the problem of

missing sequence identifiers (process IDs discussed in Section 2.1)

is tackled with various strategies.

4.5.2. Techniques

We were surprised to observe discords regarding some gen-

eral assumptions on the nature of log files. First of all, we

noted a tendency to employ token-based approaches rather than

character-based approaches. We attribute this to the fact that

token-based strategies are generally computationally less expen-

sive and align better with heuristics, for example, replacing nu-

meric values with wildcards before carrying out a more sophis-

ticated clustering procedure. Despite these advantages, we think

that character-based approaches have high potential of generating

more precise cluster templates. We have already pointed out in

Wurzenberger et al. (2017a) that token-based approaches are un-

able to correctly handle words that differ only slightly, e.g., URLs

or words with identical semantic meaning such as “u.user” and

“t.user” that are frequently found in SQL logs. Moreover, choosing a

set of delimiters that are used to split the log messages into tokens

is not trivial in practice, because different sets of delimiters may be

required for appropriately tokenizing different log messages (Jiang

et al., 2019; Tovar ̌nák and Pitner, 2019).

We also observed that several token-based algorithms compare

tokens only at identical positions. The problem with such a strat-

egy is that optional tokens or tokens consisting of multiple words

shift the positions of the remaining tokens in the log line. This may

cause otherwise similar log lines to incorrectly end up in different

clusters (Tovar ̌nák and Pitner, 2019). While some articles such as

Makanju et al. (2009b) explicitly state or implicitly assume that the

order of words is relevant for clustering, others (e.g., Vaarandi and

Pihelgas, 2015) particularly design their algorithms to be resilient

to word shifts. Since optional words and free text are common in

most unstructured log files, we recommend to carry out research

on approaches that alleviate these issues.

We stated in Section 3.2 that approaches on protocol reverse

engineering (Narayan et al., 2016) are excluded from this survey,

because of their focus on network protocols rather than system log
ata. However, we see the application of algorithms from protocol

everse engineering for the generation of log signatures as a po-

entially interesting area for future research. The reason for this is

hat existing protocol reverse engineering approaches often con-

ider both character-based matching through n-grams as well as

he positions of these n-grams or tokens relevant for the extrac-

ion of protocol syntaxes. Adapting concepts from protocol reverse

ngineering may thus effectively alleviate the previously described

ssues with existing log signature extraction approaches.

.5.3. Benchmarking & Evaluation

Despite of the fact that SLCT (Vaarandi, 2003) is one of the first

lgorithms designed for log clustering, it is still regarded as de

acto standard due to its open-source availability. However, more

ecent articles demonstrated its weaknesses and proposed alter-

ative clustering strategies that largely improved the quality of

lusters and signatures. In particular, SLCT generates overly gen-

ral clusters consisting of only wildcards, which obviously cover

 large number of log lines but provide little to no informa-

ion for the user, as well as overly specific patterns of similar

og lines (Taerat et al., 2011). We therefore suggest to employ

ore recent alternative approaches for benchmarking in future ar-

icles. In addition, SLCT and other standards such as LogHound

 Vaarandi, 2004), LogCluster (Vaarandi and Pihelgas, 2015), and

PLoM (Makanju et al., 2009b) only operate on fixed-size log files

nd are not able to incrementally process log lines for clustering.

owever, since stream processing is essential for grouping logs in

eal-world environments where frequent reclusterings on training

ets are not an option, we argue that algorithms capable of such

nline analyses are superior regarding their applicability.

We observed that evaluating log clustering approaches is far

rom trivial. In order to quantitatively determine the quality of the

enerated clusters, anomalies or patterns, ground truth consisting

f labeled log data or at least expected signatures are required.

oreover, since log data collected from specific sources often ex-

ibits peculiarities, proper evaluation should always be carried out

n multiple data sets. However, generating labeled data usually

equires time-consuming manual work. Thus, open-source labeled

og data would be highly beneficial for objective comparisons and

ould allow researchers to benchmark approaches in a thorough

anner. We were pleased to see that He et al. (2017a,b) not only

rovide the code of their algorithms, but also reimplement other

pproaches and further collect log data sets including labels 10 that

pecify which log lines belong to the same clusters, i.e., originate

rom the same log events. This enables reproducibility and proper

omparisons among different approaches. We hope to see more re-

earchers contributing or making their data and code accessible to

he public.

Finally, we also point out that only few authors injected actual

ttacks in their data sets, but rather targeted failures and errors.

hile these could of course be artifacts of attacks, we suggest to

se real attack scenarios in future evaluations. Since anomaly de-

ection is applied in intrusion detection solutions, use cases more

losely related to cyber threats have the potential to expand the

ossible application areas.

. Approach selection

We identified and assessed several properties of log cluster-

ng algorithms in the previous sections and used them to group

xisting approaches into meaningful classes. Many of the identi-

ed characteristics are essential for achieving application-specific

https://github.com/logpai

M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739 13

g

t

t

o

T

r

p

a

a

w

M

p

d

c

w

s

s

o

u

t

d

l

s

a

o

a

a

n

a

t

o

n

o

a

t

c

a

a

o

c

e

t

I

p

f

f

o

s

a

p

t

a

t

p

p

f

p

S

c

t

T

b

a

t

i

fl

t

p

r

c

m

p

h

i

a

w

t

l

d

i

c

c

c

11 http://81.189.135.168/selection/ .
oals and the prepared tables and discussions support administra-

ors and analysts in making appropriate selections for their sys-

ems at hand. However, in practice it is often difficult to link the

bjectives of the analysis to characteristics of clustering algorithms.

his is due to the fact that there is usually not one, but a range of

elevant attributes, where each attribute may be of different im-

ortance for the analysts.

For illustrating this issue, consider a scenario where an expert is

sked to pick a particular log clustering algorithm. In this scenario,

 vendor for log management solutions employs security analysts

ho implement a module for a Security Information and Event

anagement (SIEM) tool. Their customers are large-scale enter-

rises that deploy the log management solutions in industrial pro-

uction systems consisting of numerous IoT-devices, including mi-

roprocessors and sensors, that are connected to servers and net-

orks. Since it is difficult to analyze these complex systems with

tandard procedures, the customers report their demands to the

ecurity analysts who gather all the received information. It turns

ut that one of the main issues is that many components regularly

ndergo modifications such as firmware updates and thus change

heir logging behavior, which is not supported by the tools. In ad-

ition to such reconfigurations, the structures of the log lines fol-

ow no particular standards and can therefore not be analyzed with

imple existing parser models. The customers struggle to detect

nd interpret occasionally occurring error messages since they lack

verview of the log data, which is constantly produced in massive

mounts. After careful consideration of these insights, the security

nalysts decide to solve this problem by first extracting the log sig-

atures and then classifying the log data in order to present it in

 more structured way. This further enables the creation of statis-

ical profiles for each log event and is a basis for the generation

f rules for alerting. However, due to the fact that a rather large

umber of log clustering approaches exist, it is not obvious which

ne to pick. Therefore, we describe a process of identifying one or

 small number of appropriate solutions in the following.

When searching for existing clustering approaches, going

hrough all available options one by one often involves time-

onsuming tasks such as reviewing each approach multiple times

nd carrying out pairwise comparisons. As a solution, we propose

 model following the weighted sum method for multi-objective

ptimization (Marler and Arora, 2004) that eases the decision pro-

ess. As a first step, we suggest to analyze the attributes and prop-

rties of the prevalent situation that elicited the need for log clus-

ering and derive the requirements on the algorithms subsequently.

n particular, we identify three areas that determine which ap-

roach fits best to a given situation and should be considered be-

ore reviewing existing approaches:

1. Objectives. Defining which objectives are pursued limits the

search space, since most algorithms are designed towards spe-

cific goals and are thus unable to fulfill all demands. The ap-

proaches reviewed in this article were divided in four major

categories regarding their overall purpose (cf. Section 4.1). We

point out again that such classifications are usually not mutu-

ally exclusive and may be further refined, e.g., in this survey

we did not differentiate between the identification of frequently

occurring log sequences and the detection of anomalous log se-

quences. In addition, other limiting factors related to the appli-

cation of the algorithm should be considered, e.g., source code

may be required in order to utilize the solution without the

need for reimplementations.

2. Log data. Several characteristics of log data that influence the

performance and quality of log clustering were already outlined

in Section 2.1 . In particular, some clustering algorithms enable

advanced techniques such as the extraction of log traces, but

demand that log lines adhere to certain standards or include
special artifacts such as process IDs. Depending on whether

these features are of relevance and the log data fulfills the re-

quirements, it is possible to exclude a number of approaches

from further consideration. Moreover, a thorough investigation

of the log data at hand yields further insights into requirements

on the clustering algorithms, for example, log data may be dif-

ficult to tokenize using only white space as a delimiter, contain

mostly key-value pairs, involve multi-line log messages, etc.

3. System requirements. Log lines are generated under certain con-

ditions determined by the system. For example, when a high

log level is set and it is common that many events occur in

a system, clustering algorithms that are able to handle the re-

sulting high quantities of log lines are essential. On the other

hand, efficiency may be less important when a system is ana-

lyzed forensically, i.e., not in real-time. Similarly, system land-

scapes that are subject to frequent modifications require algo-

rithms that are able to handle dynamic changes of the cluster

structures. All such restrictions caused by the system that gen-

erates the log lines indicate which approaches may be better

suited than others.

Additional attributes that may be of relevance may be derived

rom meta information of the approaches, e.g., their evaluation

utlined in the respective papers. Since we gathered comprehen-

ive data in course of carrying out this survey, we considered all

ttributes that were used in the survey for the approach selection

rocedure.

The next step of our model is to assign a weight to each at-

ribute that represents its relevance to the analysis. These weights

re then multiplied with the values ascertained for the respec-

ive properties of the reviewed approaches. For the survey results

resented in the tables in Section 4 , this corresponds to multi-

lying the weight of a specific attribute with 1.0 if the approach

ulfills that property (�), 0.5 if the approach partially fulfills that

roperty (~) and 0.0 if the approach does not fulfill that property.

ince some of the attributes are categorical and not mutually ex-

lusive, e.g., the clustering techniques, one-hot encoding was used

o avoid problems with ordinal values (Harris and Harris, 2007).

he weighted attributes are then summed up row-wise in the ta-

les, i.e., the score of each approach is the sum of the weighted

ttributes. Note that the user-defined weights thereby act similar

o a query, i.e., attributes that are weighted higher have a larger

nfluence on the score, attributes that are weighted 0.0 do not in-

uence the score and attributes with scores < 0.0 negatively affect

he score.

It is then possible to rank the approaches according to the com-

uted scores, where approaches that are ranked higher fulfill more

elevant attributes. In order to increase the understandability and

omparability of the scores, we suggest to divide all scores by their

aximum, i.e., normalize them in the range [0, 1].

In order to apply these principles to the scenario that was

roposed earlier in this section, the weights for the attributes

ave to be defined. In the scenario, the security analysts primar-

ly pursue log signature extraction, thus the respective attributes

re weighted 1.0, and also desire a better overview on the data,

hich is weighted 0.5. In addition, the constraints from the sys-

em and data demand online, adaptive and fast processing of log

ines, which are thus weighted 1.0.

In order to evaluate this scenario and also give other users with

ifferent scenarios at hand the possibility to make use of our find-

ngs, we implemented the ranking model as a web-based appli-

ation that is accessible online. 11 Fig. 7 shows the main interface,

onsisting of an input form for weighting the attributes, the list

ontaining the ranked approaches and their respective scores, and

http://81.189.135.168/selection/

14 M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739

Fig. 7. Web interface of the Log Clustering Approach Selection tool. Top: Input form for attribute weights. Bottom left: Approaches ranked by their respective similarity to

the query. Bottom right: PCA plot showing clusters of similar approaches.

a

r

o

F

t

t

T

w

i

s

(

t

o

0

r
a plot showing a principal component analysis (PCA) (Jolliffe, 2005)

of all approaches (blue points) and all feature axes (green lines)

with a corresponding attribute weight other than 0.0. The names

of the approaches appear when the user hovers the mouse pointer

over any point and the red point signalizes the approach that

achieved the highest score. Clicking the “Submit” button recalcu-

lates the ranking and generates a new plot for the currently en-

tered weights, the “Reset” button resets all weights to 0.0, and the

“Example” buttons fill the weights for predefined scenarios. “Ex-

ample 2” corresponds to the scenario outlined in this section.

We included PCA because it provides a convenient way of visu-

ally comparing all approaches with respect to multiple attributes

in a single plot. Similar approaches are located close to each other

and thus form clusters. As a consequence, it is easy to find alterna-

tive approaches in case that the best ranked approach is not appli-

cable. On top of that, following the direction of the feature axes
llows the reader to discover approaches that fulfill or lack the

espective attributes represented by these axes. Finally, by nature

f the PCA, related axes are somewhat aligned with each other.

or example, the figure shows that approaches that pursue the ex-

raction of templates (“Templates”) are very likely also approaches

hat make use of signatures as means of clustering (“Signatures”).

his allows users to discover attributes that usually occur together,

hich are useful insights when the search is performed iteratively,

.e., the query is repeatedly modified depending on the results ob-

erved in the ranking and plot.

The figure shows that the approach by Hamooni et al.

2016) achieved the highest score and is thus the best fitting solu-

ion for the situation outlined in the scenario. Note that the score

f 1.0 does not imply that all attributes with a weight not equal to

.0 are necessarily fulfilled, since the scores are always computed

elatively to the maximum of all scores, i.e., there is always at

M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739 15

l

t

s

a

t

a

a

p

a

v

f

a

fi

a

a

o

t

S

E

c

p

d

w

(

d

h

6

fi

p

p

s

t

m

c

g

s

t

e

d

a

a

m

e

a

e

w

b

g

a

o

t

i

a

a

t

D

c

i

A

I

H

R

A

A

A

A

B

B

B

C

C

C

C

D

D

D

E

F

F

G

G

H

H

H

H

east one approach with a score of 1.0. The figure also shows that

here are several other approaches close to the point that repre-

ents the highest-scoring approach. Not surprisingly, these are the

pproaches that also achieved high scores in the ranking. As men-

ioned, it is now possible to discover groups of approaches that

re related to each other by following the direction of the feature

xes. For example, the group of approaches in the bottom of the

lot deal with signature extraction but do not support online or

daptive log processing.

We briefly outline the two remaining default examples we pro-

ide on the website of our selection tool. Example 1 searches

or online log clustering approaches that are capable of detecting

nomalies in single lines or sequences of lines. Accordingly, the

elds “Outliers”, “Sequences”, and “Online” are weighted 1.0. Such

 use-case could be typical for an enterprise environment, where

nalysts are mainly interested in the automatic detection of failures

r attacks, but the generation of templates or application of par-

icular algorithms is of less relevance. The results show that only

plunk (Carasso, 2012) fulfills all requirements set by the scenario.

xample 3 on the other hand represents a more specific search on

haracter-based approaches for outlier detection. In addition, ap-

roaches that enable fast processing and were evaluated on real

ata should be ranked higher. This setting could refer to a scenario

here it is known that splitting log data into tokens is difficult

cf. Section 4.5) and produced in fast rates, e.g., logs collected from

atabases. For such a scenario, our model selection tool assigns the

ighest rank to the approach by Juvonen et al. (2015) .

. Conclusion

Log clustering plays an important role in many application

elds, including cyber security. Accordingly, a great number of ap-

roaches have been developed in the past. However, existing ap-

roaches are often designed towards particular objectives, make

pecific assumptions on the log data and exhibit characteristics

hat prevent or foster their application in certain domains. This

akes it difficult to select one or multiple approaches for a use

ase at hand. In this paper we therefore carried out a survey that

roups clustering approaches according to attributes that support

uch decisions. For this, we created a set of evaluation criteria

hat breaks down aspects of clustering approaches that are rel-

vant with respect to objectives, clustering techniques, anomaly

etection, and evaluation. We assessed these attributes using 59

pproaches proposed in scientific literature as well as 2 non-

cademic solutions.

We found that approaches usually pursue one or more of four

ajor objectives: overview and filtering, parsing and signature

xtraction, static outlier detection, and sequences and dynamic

nomaly detection. We were further able to identify different cat-

gories of clustering techniques, including partitioning, neural net-

orks, source code analysis as well as token-based, character-

ased, distance-based and density-based techniques. We investi-

ated which approaches are suitable for detecting specific types of

nomalies in the log data, discussed how the evaluation is carried

ut in the reviewed articles and made several suggestions for fu-

ure work. Finally, we presented our tool for selecting log cluster-

ng approaches based on the data collected throughout the survey

nd a list of attributes weighted by the user. The tool ranks the

pproaches according to their ability to fulfilling the queried at-

ributes and visualizes the resulting groups in a PCA plot.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.
cknowledgements

This work was partly funded by the FFG projects INDICAET-

NG (868306), IoT4CPS (863129), and DECEPT (873980), and the EU

2020 project GUARD (833456).

eferences

grawal, A., Karlupia, R., Gupta, R., 2019. Logan: a distributed online log parser. In:
Proceedings of the 35th International Conference on Data Engineering (ICDE).

IEEE, pp. 1946–1951. doi: 10.1109/ICDE.2019.00211 .

haron, M., Barash, G., Cohen, I., Mordechai, E., 2009. One graph is worth
a thousand logs: uncovering hidden structures in massive system event

logs. In: Proceedings of the Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, pp. 227–243. doi: 10.1007/

978- 3- 642- 04180- 8 _ 32 .
llen, R., Richardson, B., 2019. Neural network, that’s the tech; to free your staff

from, bad regex. [Online; accessed 19-December-2019].

ussel, N., Petetin, Y., Chabridon, S., 2018. Improving performances of log mining
for anomaly prediction through nlp-based log parsing. In: Proceedings of the

International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). IEEE, pp. 237–243. doi: 10.1109/

MASCOTS.2018.0 0 031 .
alakrishnan, R., Sahoo, R.K., 2006. Lossless compression for large scale cluster logs.

In: Proceedings of the 20th International Parallel & Distributed Processing Sym-

posium. IEEE, p. 7. doi: 10.1109/IPDPS.2006.1639692 .
ao, L., Li, Q., Lu, P., Lu, J., Ruan, T., Zhang, K., 2018. Execution anomaly detection

in large-scale systems through console log analysis. J. Syst. Softw. 143, 172–186.
doi: 10.1016/j.jss.2018.05.016 .

eeferman, D., Berger, A., 20 0 0. Agglomerative clustering of a search engine query
log. In: Proceedings of the 6th International Conference on Knowledge Discov-

ery and Data Mining. ACM, pp. 407–416. doi: 10.1145/347090.347176 .
arasso, D. , 2012. Exploring splunk. CITO Research, New York, USA, p. 156 .

arpineto, C., Osi ́nski, S., Romano, G., Weiss, D., 2009. A survey of web cluster-

ing engines. ACM Comput. Surv. (CSUR) 41 (3), 17:1–17:38. doi: 10.1145/1541880.
1541884 .

hristensen, R., Li, F., 2013. Adaptive log compression for massive log data. In: Pro-
ceedings of the International Conference on Management of Data. ACM, p. 1283.

doi: 10.1145/2463676.2465341 .
huah, E., Kuo, S.-h., Hiew, P., Tjhi, W.-C., Lee, G., Hammond, J., Michalewicz, M.T.,

Hung, T., Browne, J.C., 2010. Diagnosing the root-causes of failures from cluster

log files. In: Proceedings of the International Conference on High Performance
Computing (HiPC). IEEE, pp. 1–10. doi: 10.1109/HIPC.2010.5713159 .

u, M., Li, F., 2016. Spell: Streaming parsing of system event logs. In: Proceedings
of the 16th International Conference on Data Mining (ICDM). IEEE, pp. 859–864.

doi: 10.1109/ICDM.2016.0103 .
u, M., Li, F., Zheng, G., Srikumar, V., 2017. Deeplog: anomaly detection and diagno-

sis from system logs through deep learning. In: Proceedings of the Conference

on Computer and Communications Security. ACM, pp. 1285–1298. doi: 10.1145/
3133956.3134015 .

u, S., Cao, J., 2015. Behavioral anomaly detection approach based on log moni-
toring. In: Proceedings of the International Conference on Behavioral, Economic

and Socio-cultural Computing (BESC). IEEE, pp. 188–194. doi: 10.1109/BESC.2015.
7365981 .

wards, V., et al., 2013. A survey on signature generation methods for network traf-

fic classification. Int. J. Adv. Res. Comput. Sci. 4 (2). doi: 10.26483/ijarcs.v4i4.
1594 .

acca, F.M., Lanzi, P.L., 2005. Mining interesting knowledge from weblogs: a survey.
Data Knowl. Eng. 53 (3), 225–241. doi: 10.1016/j.datak.2004.08.001 .

u, Q., Lou, J.-G., Wang, Y., Li, J., 2009. Execution anomaly detection in distributed
systems through unstructured log analysis. In: Proceedings of the 9th Interna-

tional Conference on Data Mining (ICDM’09). IEEE, pp. 149–158. doi: 10.1109/

ICDM.2009.60 .
ainaru, A., Cappello, F., Trausan-Matu, S., Kramer, B., 2011. Event log mining tool for

large scale hpc systems. In: Proceedings of the European Conference on Parallel
Processing. Springer, pp. 52–64. doi: 10.1007/978- 3- 642- 23400- 2 _ 6 .

urumdimma, N., Jhumka, A., Liakata, M., Chuah, E., Browne, J., 2015. Towards de-
tecting patterns in failure logs of large-scale distributed systems. In: Proceed-

ings of the International Parallel and Distributed Processing Symposium Work-

shop (IPDPSW). IEEE, pp. 1052–1061. doi: 10.1109/IPDPSW.2015.109 .
amooni, H., Debnath, B., Xu, J., Zhang, H., Jiang, G., Mueen, A., 2016. Logmine: fast

pattern recognition for log analytics. In: Proceedings of the 25th International
Conference on Information and Knowledge Management. ACM, pp. 1573–1582.

doi: 10.1145/2983323.2983358 .
arris, D.M., Harris, S.L., 2007. Chapter 3 - sequential logic design. In: Digital Design

and Computer Architecture. Morgan Kaufmann, Burlington, pp. 103–165. doi: 10.
1016/B978-012370497-9/50 0 04-4 .

e, P., Zhu, J., He, S., Li, J., Lyu, M.R., 2017. Towards automated log parsing for large-

scale log data analysis. Trans. Depend. Secure Comput. doi: 10.1109/TDSC.2017.
2762673 .

e, P., Zhu, J., Zheng, Z., Lyu, M.R., 2017. Drain: an online log parsing approach with
fixed depth tree. In: Proceedings of the International Conference on Web Ser-

vices (ICWS). IEEE, pp. 33–40. doi: 10.1109/ICWS.2017.13 .

https://doi.org/10.13039/100010661
https://doi.org/10.1109/ICDE.2019.00211
https://doi.org/10.1007/978-3-642-04180-8_32
https://doi.org/10.1109/MASCOTS.2018.00031
https://doi.org/10.1109/IPDPS.2006.1639692
https://doi.org/10.1016/j.jss.2018.05.016
https://doi.org/10.1145/347090.347176
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0007
https://doi.org/10.1145/1541880.1541884
https://doi.org/10.1145/2463676.2465341
https://doi.org/10.1109/HIPC.2010.5713159
https://doi.org/10.1109/ICDM.2016.0103
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1109/BESC.2015.7365981
https://doi.org/10.26483/ijarcs.v4i4.1594
https://doi.org/10.1016/j.datak.2004.08.001
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1007/978-3-642-23400-2_6
https://doi.org/10.1109/IPDPSW.2015.109
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1016/B978-012370497-9/50004-4
https://doi.org/10.1109/TDSC.2017.2762673
https://doi.org/10.1109/ICWS.2017.13

16 M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739

N

P

R

R

R

S

S

S

S

T

T

T

T

V

V

V

V

W

W

W

W

X

Jain, S., Singh, I., Chandra, A., Zhang, Z.-L., Bronevetsky, G., 2009. Extracting the tex-
tual and temporal structure of supercomputing logs. In: Proceedings of the In-

ternational Conference on High Performance Computing (HiPC). IEEE, pp. 254–
263. doi: 10.1109/HIPC.2009.5433202 .

Jayathilake, P., Weeraddana, N., Hettiarachchi, H., 2017. Automatic detection of
multi-line templates in software log files. In: Proceedings of the 17th Interna-

tional Conference on Advances in ICT for Emerging Regions (ICTer). IEEE, pp. 1–
8. doi: 10.1109/ICTER.2017.8257824 .

Jia, T., Yang, L., Chen, P., Li, Y., Meng, F., Xu, J., 2017. Logsed: anomaly diagnosis

through mining time-weighted control flow graph in logs. In: Proceedings of
the 10th International Conference on Cloud Computing (CLOUD). IEEE, pp. 447–

455. doi: 10.1109/CLOUD.2017.64 .
Jiang, J., Versteeg, S., Han, J., Hossain, M.A., Schneider, J.-G., Leckie, C., Farah-

mandpour, Z., 2019. P-gram: positional n-gram for the clustering of machine-
generated messages. IEEE Access 7, 88504–88516. doi: 10.1109/ACCESS.2019.

2924928 .

Jiang, Z.M., Hassan, A.E., Hamann, G., Flora, P., 2008. An automated approach for
abstracting execution logs to execution events. J. Softw. 20 (4), 249–267. doi: 10.

1002/smr.v20:4 .
Jolliffe, I. , 2005. Principal Component Analysis. American Cancer Society .

Joshi, B., Bista, U., Ghimire, M., 2014. Intelligent clustering scheme for log data
streams. In: Proceedings of the International Conference on Intelligent Text

Processing and Computational Linguistics. Springer, pp. 454–465. doi: 10.1007/

978- 3- 642- 54903- 8 _ 38 .
Juvonen, A., Sipola, T., Hämäläinen, T., 2015. Online anomaly detection using dimen-

sionality reduction techniques for http log analysis. Comput. Netw. 91, 46–56.
doi: 10.1016/j.comnet.2015.07.019 .

Kimura, T., Ishibashi, K., Mori, T., Sawada, H., Toyono, T., Nishimatsu, K., Watan-
abe, A ., Shimoda, A ., Shiomoto, K., 2014. Spatio-temporal factorization of log

data for understanding network events. In: Proceedings of the Conference

on Computer Communications (INFOCOM). IEEE, pp. 610–618. doi: 10.1109/
INFOCOM.2014.6847986 .

Kobayashi, S., Fukuda, K., Esaki, H., 2014. Towards an nlp-based log template gener-
ation algorithm for system log analysis. In: Proceedings of the 9th International

Conference on Future Internet Technologies. ACM, pp. 11:1–11:4. doi: 10.1145/
2619287.2619290 .

Leichtnam, L., Totel, E., Prigent, N., Mé, L., 2017. Starlord: Linked security data ex-

ploration in a 3d graph. In: Proceedings of the Symposium on Visualization for
Cyber Security (VizSec). IEEE, pp. 1–4. doi: 10.1109/VIZSEC.2017.8062203 .

Li, T., Jiang, Y., Zeng, C., Xia, B., Liu, Z., Zhou, W., Zhu, X., Wang, W., Zhang, L.,
Wu, J., et al., 2017. Flap: an end-to-end event log analysis platform for sys-

tem management. In: Proceedings of the 23rd International Conference on
Knowledge Discovery and Data Mining. ACM, pp. 1547–1556. doi: 10.1145/

3097983.3098022 .

Li, T., Liang, F., Ma, S., Peng, W., 2005. An integrated framework on mining logs files
for computing system management. In: Proceedings of the 11th International

Conference on Knowledge Discovery in Data Mining. ACM, pp. 776–781. doi: 10.
1145/1081870.1081972 .

Li, Z., Davidson, M., Fu, S., Blanchard, S., Lang, M., 2018. Converting unstructured
system logs into structured event list for anomaly detection. In: Proceedings of

the 13th International Conference on Availability, Reliability and Security. ACM,
pp. 15:1–15:10. doi: 10.1145/3230833.3230855 .

Lin, Q., Zhang, H., Lou, J.-G., Zhang, Y., Chen, X., 2016. Log clustering based prob-

lem identification for online service systems. In: Proceedings of the 38th In-
ternational Conference on Software Engineering Companion. ACM, pp. 102–111.

doi: 10.1145/2889160.2889232 .
Makanju, A . , Zincir-Heywood, A .N. , Milios, E.E. , et al. , 2009. Extracting message

types from bluegene/l’s logs. In: Proceedings of the SOSP Workshop on the
Analysis of System Logs (WASL) .

Makanju, A .A ., Zincir-Heywood, A .N., Milios, E.E., 2009. Clustering event logs us-

ing iterative partitioning. In: Proceedings of the 15th International Conference
on Knowledge Discovery and Data Mining. ACM, pp. 1255–1264. doi: 10.1145/

1557019.1557154 .
Marler, R.T., Arora, J.S., 2004. Survey of multi-objective optimization methods

for engineering. Struct. Multidiscip. Optim. 26 (6), 369–395. doi: 10.1007/
s0 0158-0 03-0368-6 .

Menkovski, V., Petkovic, M., 2017. Towards unsupervised signature extraction of

forensic logs. In: Proceedings of the 26th Benelux Conference on Machine
Learning, pp. 154–160. doi: 10.1007/978- 3- 319- 71273- 4 _ 25 .

Messaoudi, S., Panichella, A., Bianculli, D., Briand, L., Sasnauskas, R., 2018. A search-
based approach for accurate identification of log message formats. In: Proceed-

ings of the 26th International Conference on Program Comprehension (ICPC’18).
ACM doi: 10.1145/3196321.3196340 .

Mizutani, M., 2013. Incremental mining of system log format. In: Proceedings of

the International Conference on Services Computing (SCC). IEEE, pp. 595–602.
doi: 10.1109/SCC.2013.73 .

Nagappan, M., Vouk, M.A., 2010. Abstracting log lines to log event types for mining
software system logs. In: Proceedings of the 7th Working Conference on Mining

Software Repositories (MSR). IEEE, pp. 114–117. doi: 10.1109/MSR.2010.5463281 .
Nandi, A ., Mandal, A ., Atreja, S., Dasgupta, G.B., Bhattacharya, S., 2016. Anomaly

detection using program control flow graph mining from execution logs. In:

Proceedings of the 22nd International Conference on Knowledge Discovery and
Data Mining. ACM, pp. 215–224. doi: 10.1145/2939672.2939712 .

Narayan, J., Shukla, S.K., Clancy, T.C., 2016. A survey of automatic protocol reverse
engineering tools. ACM Comput. Surv. (CSUR) 48 (3), 40:1–40:26. doi: 10.1145/

2840724 .
ing, X., Jiang, G., Chen, H., Yoshihira, K., 2014. Hlaer: a system for heterogeneous
log analysis.

ortnoy, L. , Eskin, E. , Stolfo, S. , 2001. Intrusion detection with unlabeled data using
clustering. In: Proceedings of the Workshop on Data Mining Applied to Security

(DMSA), pp. 5–8 .
Qiu, T., Ge, Z., Pei, D., Wang, J., Xu, J., 2010. What happened in my network: mining

network events from router syslogs. In: Proceedings of the 10th Conference on
Internet Measurement. ACM, pp. 472–484. doi: 10.1145/1879141.1879202 .

eidemeister, T., Jiang, M., Ward, P.A., 2011. Mining unstructured log files for re-

current fault diagnosis. In: Proceedings of the International Symposium on In-
tegrated Network Management (IM). IEEE, pp. 377–384. doi: 10.1109/INM.2011.

5990536 .
en, R., Cheng, J., Yin, Y., Zhan, J., Wang, L., Li, J., Luo, C., 2018. Deep convolutional

neural networks for log event classification on distributed cluster systems. In:
Proceedings of the International Conference on Big Data. IEEE, pp. 1639–1646.

doi: 10.1109/BigData.2018.8622611 .

ousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and val-
idation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. doi: 10.1016/

0377- 0427(87)90125- 7 .
alfner, F. , Tschirpke, S. , 2008. Error log processing for accurate failure prediction.

In: Proceedings of the 1st USENIX Workshop on the Analysis of System Logs
(WASL) .

aneifar, H., Bonniol, S., Laurent, A., Poncelet, P., Roche, M., 2009. Terminology

extraction from log files. In: Proceedings of the International Conference on
Database and Expert Systems Applications. Springer, pp. 769–776. doi: 10.1007/

978- 3- 642- 03573- 9 _ 65 .
chipper, D., Aniche, M., van Deursen, A., 2019. Tracing back log data to its log

statement: from research to practice. In: Proceedings of the 16th Interna-
tional Conference on Mining Software Repositories. IEEE Press, pp. 545–549.

doi: 10.1109/MSR.2019.0 0 081 .

hima, K. , 2016. Length matters: clustering system log messages using length of
words. Comput. Res. Reposit. (CoRR) abs/1611.03213 .

Stearley, J., 2004. Towards informatic analysis of syslogs. In: Proceedings of the In-
ternational Conference on Cluster Computing. IEEE, pp. 309–318. doi: 10.1109/

CLUSTR.2004.1392628 .
aerat, N., Brandt, J., Gentile, A., Wong, M., Leangsuksun, C., 2011. Baler: determin-

istic, lossless log message clustering tool. Comput. Sci.-Res. Dev. 26 (3–4), 11.

doi: 10.10 07/s0 0450- 011- 0155- 3 .
ang, L., Li, T., 2010. Logtree: A framework for generating system events from raw

textual logs. In: Proceedings of the 10th International Conference on Data Min-
ing (ICDM). IEEE, pp. 491–500. doi: 10.1109/ICDM.2010.76 .

ang, L., Li, T., Perng, C.-S., 2011. Logsig: generating system events from raw textual
logs. In: Proceedings of the 20th International Conference on Information and

Knowledge Management. ACM, pp. 785–794. doi: 10.1145/2063576.2063690 .

Thaler, S., Menkonvski, V., Petkovic, M., 2017. Towards a neural language model for
signature extraction from forensic logs. In: Proceedings of the 5th International

Symposium on Digital Forensic and Security (ISDFS). IEEE, pp. 1–6. doi: 10.1109/
ISDFS.2017.7916497 .

ovar ̌nák, D. , Pitner, T. , 2019. Normalization of unstructured log data into streams
of structured event objects. In: Proceedings of the Symposium on Integrated

Network and Service Management (IM). IEEE, pp. 671–676 .
aarandi, R., 2003. A data clustering algorithm for mining patterns from event logs.

In: Proceedings of the 3rd Workshop on IP Operations & Management (IPOM

2003). IEEE, pp. 119–126. doi: 10.1109/IPOM.2003.1251233 .
Vaarandi, R., 2004. A breadth-first algorithm for mining frequent patterns from

event logs. In: Intelligence in Communication Systems. Springer, pp. 293–308.
doi: 10.1007/978- 3- 540- 30179- 0 _ 27 .

aarandi, R., Pihelgas, M., 2015. Logcluster - a data clustering and pattern mining
algorithm for event logs. In: Proceedings of the 11th International Conference

on Network and Service Management (CNSM). IEEE, pp. 1–7. doi: 10.1109/CNSM.

2015.7367331 .
akali, A., Pokorn ̀y, J., Dalamagas, T., 2004. An overview of web data clustering prac-

tices. In: Proceedings of the International Conference on Extending Database
Technology. Springer, pp. 597–606. doi: 10.1007/978- 3- 540- 30192- 9 _ 59 .

an der Aalst, W., Weijters, T., Maruster, L., 2004. Workflow mining: discovering
process models from event logs. Trans. Knowl. Data Eng. (9) 1128–1142. doi: 10.

1109/TKDE.2004.47 .

ang, P.-H., Liao, I.-E., Kao, K.-F., Huang, J.-Y., 2018. An intrusion detection method
based on log sequence clustering of honeypot for modbus tcp protocol. In: Pro-

ceedings of the International Conference on Applied System Invention (ICASI).
IEEE, pp. 255–258. doi: 10.1109/ICASI.2018.8394581 .

urzenberger, M. , Landauer, M. , Skopik, F. , Kastner, W. , 2019. Aecid-pg: A
tree-based log parser generator to enable log analysis. In: Proceedings of the

Symposium on Integrated Network and Service Management. IEEE, pp. 7–12 .

urzenberger, M., Skopik, F., Fiedler, R., Kastner, W., 2017. Applying high-
performance bioinformatics tools for outlier detection in log data. In: Proceed-

ings of the 3rd International Conference on Cybernetics (CYBCONF). IEEE, pp. 1–
10. doi: 10.1109/CYBConf.2017.7985760 .

urzenberger, M., Skopik, F., Landauer, M., Greitbauer, P., Fiedler, R., Kastner, W.,
2017. Incremental clustering for semi-supervised anomaly detection applied on

log data. In: Proceedings of the 12th International Conference on Availability,

Reliability and Security. ACM, pp. 31:1–31:6. doi: 10.1145/3098954.3098973 .
u, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I., 2009. Detecting large-scale

system problems by mining console logs. In: Proceedings of the 22nd Sympo-
sium on Operating Systems Principles. ACM, pp. 117–132. doi: 10.1145/1629575.

1629587 .

https://doi.org/10.1109/HIPC.2009.5433202
https://doi.org/10.1109/ICTER.2017.8257824
https://doi.org/10.1109/CLOUD.2017.64
https://doi.org/10.1109/ACCESS.2019.2924928
https://doi.org/10.1002/smr.v20:4
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0028
https://doi.org/10.1007/978-3-642-54903-8_38
https://doi.org/10.1016/j.comnet.2015.07.019
https://doi.org/10.1109/INFOCOM.2014.6847986
https://doi.org/10.1145/2619287.2619290
https://doi.org/10.1109/VIZSEC.2017.8062203
https://doi.org/10.1145/penalty -@M 3097983.3098022
https://doi.org/10.1145/1081870.1081972
https://doi.org/10.1145/3230833.3230855
https://doi.org/10.1145/2889160.2889232
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0038
https://doi.org/10.1145/1557019.1557154
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1007/978-3-319-71273-4_25
https://doi.org/10.1145/3196321.3196340
https://doi.org/10.1109/SCC.2013.73
https://doi.org/10.1109/MSR.2010.5463281
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1145/2840724
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0047
https://doi.org/10.1145/1879141.1879202
https://doi.org/10.1109/INM.2011.5990536
https://doi.org/10.1109/BigData.2018.8622611
https://doi.org/10.1016/0377-0427(87)90125-7
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0052
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0052
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0052
https://doi.org/10.1007/978-3-642-03573-9_65
https://doi.org/10.1109/MSR.2019.00081
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0055
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0055
https://doi.org/10.1109/CLUSTR.2004.1392628
https://doi.org/10.1007/s00450-011-0155-3
https://doi.org/10.1109/ICDM.2010.76
https://doi.org/10.1145/2063576.2063690
https://doi.org/10.1109/ISDFS.2017.7916497
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0061
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0061
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0061
https://doi.org/10.1109/IPOM.2003.1251233
https://doi.org/10.1007/978-3-540-30179-0_27
https://doi.org/10.1109/CNSM.2015.7367331
https://doi.org/10.1007/978-3-540-30192-9_59
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/ICASI.2018.8394581
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0068
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0068
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0068
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0068
http://refhub.elsevier.com/S0167-4048(20)30025-0/sbref0068
https://doi.org/10.1109/CYBConf.2017.7985760
https://doi.org/10.1145/3098954.3098973
https://doi.org/10.1145/1629575.1629587

M. Landauer, F. Skopik and M. Wurzenberger et al. / Computers & Security 92 (2020) 101739 17

Z

Z

Z

Z

Z

Z

Z

i

a

s

c

t

t

hang, M., Zhao, Y., He, Z., 2017. Genlog: Accurate log template discovery for
stripped x86 binaries. In: Proceedings of the 41st Annual Computer Software

and Applications Conference (COMPSAC), 1. IEEE, pp. 337–346. doi: 10.1109/
COMPSAC.2017.137 .

hang, X., Xu, Y., Lin, Q., Qiao, B., Zhang, H., Dang, Y., Xie, C., Yang, X., Cheng, Q.,
Li, Z., et al., 2019. Robust log-based anomaly detection on unstable log data.

In: Proceedings of the 27th Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM,

pp. 807–817. doi: 10.1145/3338906.3338931 .

hao, Y., Xiao, H., 2016. Extracting log patterns from system logs in large. In: Pro-
ceedings of the International Parallel and Distributed Processing Symposium

Workshops. IEEE, pp. 1645–1652. doi: 10.1109/IPDPSW.2016.110 .
hen, J., 2014. Sequence website. http://sequencer.io/ .

hu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., Lyu, M.R., 2019. Tools and benchmarks
for automated log parsing. In: Proceedings of the 41st International Conference

on Software Engineering: Software Engineering in Practice. IEEE Press, pp. 121–

130. doi: 10.1109/ICSE-SEIP.2019.0 0 021 .
ou, D.-Q., Qin, H., Jin, H., 2016. Uilog: Improving log-based fault diagnosis

by log analysis. J. Comput. Sci. Technol. 31 (5), 1038–1052. doi: 10.1007/
s11390- 016- 1678- 7 .

ulkernine, F., Martin, P., Powley, W., Soltani, S., Mankovskii, S., Addleman, M., 2013.
Capri: A tool for mining complex line patterns in large log data. In: Proceed-

ings of the 2nd International Workshop on Big Data, Streams and Heteroge-

neous Source Mining. ACM, pp. 47–54. doi: 10.1145/2501221.2501228 .

Dipl.-Ing. Max Landauer finished his Bachelor’s Degree in
Business Informatics at the Vienna University of Technol-

ogy in 2016. In 2017, he joined the Austrian Institute of

Technology in 2017 where he carried out his Master The-
sis. He started his PhD studies in 2018 and is currently

employed as a Junior Scientist at AIT. His main research
interests are anomaly detection and log data analysis.

Dr. Florian Skopik , CISSP, CISM, CCNP-S joined the Aus-

trian Institute of Technology in 2011 and is the The-
matic Coordinator of AIT’s cyber security research pro-

gram. He coordinates national and international (EU) re-

search projects, as well as the overall research direction
of the team. The main topics of his projects are focus-

ing on smart grid security, the security of critical infras-
tructures and national cyber security. He published more

than 100 scientific conference papers and journal articles
and holds some 20 industry-recognized security certifica-

tions, Florian is member of various conference program

committees and editorial boards, as well as standardiza-
tion groups, such as ETSI TC Cyber and OASIS CTI. Florian

s IEEE Senior Member, Member of the Association for Computing Machinery (ACM)
nd Member of the International Society of Automation (ISA).
DI Markus Wurzenberger finished his Bachelor’s Degree

in Mathematics in Science and Technology in 2013. In
2014 he joined AIT as a freelancer and finished his Mas-

ter’s Degree in Technical Mathematics in 2015. In the end
of 2015 he joined AIT as Junior Scientist and is working

on national and international projects in the context of

anomaly detection. In 2016 he started his PhD studies in
Computer Science.

Andreas Rauber is Head of the Information and Software
Engineering Group (IFS) at the Department of Informa-

tion Systems Engineering (ISE) at the Vienna University
of Technology (TU-Wien). He furthermore is president of

AARIT, the Austrian Association for Research in IT and a

Key Researcher at Secure Business Austria (SBA-Research.
He has published numerous papers in refereed journals

and international conferences and served as PC member
and reviewer/Editorial Board Member for several major

journals, conferences and workshops. He is a member of
the Association for Computing Machinery (ACM), The In-

stitute of Electrical and Electronics Engineers (IEEE), the

Austrian Society for Artificial Intelligence (ÖGAI). His re-
earch interests cover the broad scope of digital libraries and information spaces, in-

luding specifically text and music information retrieval and organization, informa-
ion visualization, as well as data analysis, neural computation and digital preserva-

ion.

https://doi.org/10.1109/COMPSAC.2017.137
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1109/IPDPSW.2016.110
http://sequencer.io/
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.1007/s11390-016-1678-7
https://doi.org/10.1145/2501221.2501228

	System log clustering approaches for cyber security applications: A survey
	1 Introduction
	2 Survey Background
	2.1 The nature of log data
	2.2 Static clustering
	2.3 Dynamic clustering
	2.4 Applications in the security domain

	3 Survey method
	3.1 Set of criteria
	3.2 Literature search

	4 Survey results
	4.1 Purpose and applicability (P)
	4.2 Clustering techniques (C)
	4.2.1 Types of static clustering techniques
	4.2.2 Types of dynamic clustering techniques
	4.2.3 Applicability in live systems
	4.2.4 Non-functional requirements

	4.3 Anomaly Detection (AD)
	4.3.1 Static outlier detection
	4.3.2 Dynamic anomaly detection
	4.3.3 Cyber attack detection

	4.4 Evaluation (E)
	4.4.1 Evaluation techniques
	4.4.2 Evaluation of Non-functional Requirements
	4.4.3 Comparisons and Reproducibility

	4.5 Discussion
	4.5.1 Problem domains
	4.5.2 Techniques
	4.5.3 Benchmarking & Evaluation

	5 Approach selection
	6 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References

