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a b s t r a c t 

The degree of sophistication of modern cyber-attacks has increased in recent years, and in the future 

these attacks will more and more target cyber-physical systems (CPS). Unfortunately, today’s security so- 

lutions that are used for enterprise information technology (IT) infrastructures are not sufficient to protect 

CPS, which have largely different properties, involve heterogeneous technologies, and have an architecture 

that is tailored to specific physical processes. The objective of the synERGY project was to develop new 

methods, tools and processes for cross-layer anomaly detection (AD) to enable the early discovery of both 

cyber- and physical-attacks with impact on CPS. To this end, synERGY developed novel machine learning 

approaches to understand a system’s normal behaviour and detect consequences of security issues as de- 

viations from the norm. The solution proposed by synERGY are flexibly adaptable to specific CPS layers, 

thus improving the detection capabilities. Moreover, synERGY interfaces with various organizational data 

sources, such as asset databases, configuration management, and risk data to facilitate the semi-automatic 

interpretation of detected anomalies. The synERGY approach was evaluated in a utility provider’s environ- 

ment. This paper reports on the general architecture and the specific pitfalls that needed to be solved, 

during the design, implementation and deployment of the synERGY system. We foresee this work to be 

of benefit for researchers and practitioners, who design and implement security systems that correlate 

massive data from computer logs, the network or organizational context sources, to timely detect cyber 

attacks. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Common security solutions such as firewalls, intrusion detec-

ion systems (IDSs) and antivirus programs mainly apply blacklist

pproaches [68] . These solutions digest signatures, created in ad-

anced malware labs or compiled from community data collected

n cloud-based malware detection systems, and periodically dis-
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ributed to endpoints to enable the detection of known bad activi-

ies. While they reliably work for known attack attempts, they fail

f new attack techniques are used or still unknown vulnerabilities

r weaknesses are exploited. As a consequence, anomaly detection

8] is required, which can discover even slight deviations of the

ystem behavior, which might lead to traces of unknown attacks. 

Unfortunately, most state-of-the art anomaly detection solu-

ions are not easily applicable to CPS and operational technology

OT) [58] , which fundamentally differ from enterprise IT networks

n terms of complexity, size and widely distributed installations.

dditionally, the few available OT security solutions are not built

o work across different infrastructure layers (i.e., correlate infor-

ation from OT and IT systems, as well as data from the network
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layer and log data from endpoints) and are thus mostly unsuitable

to detect modern multi-stage cyber-attacks [17] . 

Another reason why today’s anomaly detection systems are

widely unsuitable for CPS is that CPS not only differ from enter-

prise IT networks, but also differ heavily among each other. CPS

on the one hand have variable network infrastructures and on

the other hand the integrated components are manifold. Hence,

machine-learning approaches are required that do not depend on

the peculiarities of a specific system for detecting attacks, but

which adapt to different usage scenarios. Moreover CPS’ operat-

ing characteristics differ from enterprise IT. Processes are usually

based on highly deterministic machine to machine communication,

which allows more sensitive anomaly detection with lower system

behavior deviation thresholds. Yet, existing anomaly detection ap-

proaches [1,8] barely take advantage of this. 

Attackers can exploit vulnerabilities and weaknesses at different

levels and in different areas of complex CPS [34] as entry points

for launching successful multi-step attacks. To counter these often

advanced malicious activities, we argue that an appropriate com-

position of different detection approaches for individual infrastruc-

ture layers (WAN, LAN, field layer) improves the effectiveness of

anomaly detection in CPS. These cross-layer solutions correlate mul-

tiple data streams of interest that are measured at different loca-

tions and OSI layers of the protocol stack. With the right combina-

tion and analysis methods, a cross-layer approach can increase the

overall security situational awareness in CPS tremendously. Nev-

ertheless, the selection of suitable data streams and observation

parameters (e.g., observation points, time periods, granularity, and

layers) remain challenging tasks. Besides detection quality, the re-

quired resources (time, budget, effort) for the detection is of im-

portance. 

We therefore propose an architecture and demonstrate a proof-

of-concept implementation of a modern reactive security solution

specifically designed for large-scale and complex CPS. The design

criteria of this architecture are: 

• It makes use of operational data sources of any type, particu-

larly network data and endpoint data, and various areas of a

CPS from the field level up to the enterprise level. 

• It applies top-notch anomaly detection mechanisms, not just

signature-based solutions, and uses machine learning to opti-

mize the same. 

• It utilizes cross-correlation techniques to increase the confi-

dence in findings and to discover novel multi-step attacks that

progress through an infrastructure. 

• It facilitates the interpretation of discovered anomalies using

contextual data from within an organization. 

The synERGY project investigated how to design, develop and

validate an architecture for an adaptive self-learning cross-layer

anomaly detection system based on open standards, which can be

vendor-independently applied to a wide range of CPS and can dis-

cover the tracks of a wide variety of modern cyber-attacks with

limited human effort by applying cross-correlation techniques of

numerous data streams. 

Our main contribution is not about the core anomaly detection

methods, but showing the various ways on how the integration of

different com ponents (even from different sources) could work to

enable cross-correlation and a demonstration of the added value.

The novelty lies in the complete system view, which we provide

in much more detail than vendors would do for their commercial

solutions. In particular, the contributions of the project (and this

paper) are: 

• An illustrative use case and reference architecture that enables

cross-correlation to detect anomalies across system areas and

layers of the technology stack. 
• A discussion on potentially applied anomaly detection tech-

niques for log data and network data. 

• An implementation and Proof-of-Concept demonstrator at a

utility provider’s site. 

• A critical discussion of the advantages and disadvantages of the

cross-correlation approach, including a cost-benefit analysis. 

Working on these challenges and research needs in the scope of

 cooperative research project was important to avoid vendor-lock-

n. Hence, particularly open source solutions and open standards

ere selected during development. 

The remainder of the paper is structured as follows.

ection 2 elaborates on background and related work.

ection 3 describes an illustrative use case for cross-correlation.

ection 4 shows the building blocks of the synERGY architecture.

he anomaly detection on various types of data streams and

pplied methods are discussed in more detail in a designated

eparate Section 5 . To prove its real-world applicability, we im-

lemented the system and integrated it at a utility provider’s

ite, as outlined in Section 6 . We discuss the outcomes of our

roof-of-concept study in Section 7 and conclude in Section 8 . 

. Related work 

This section summarizes related work on the key aspects of the

ynERGY approach including architectures of distributed systems,

ata sources for cross-correlation analysis, intrusion detection in

PS, and incident response and decision making. 

.1. Distributed systems architectures 

Distributed systems architectures [77] are conceptual models

hat design systems that consist of different software and hardware

omponents which communicate via a network and coordinate

heir actions. Since several decades, distributed systems architec-

ures have served as blueprints for numerous networks. In power

rids, especially smart grids they define concepts for controlling

everal components [61] , forecasting energy demand [30] and en-

ble intelligent home energy management systems [73] . Also mod-

rn applications such as smart living build on distributed systems

rchitectures [33,49] . CPS are distributed systems by definition and

uild on architectures that systematical model the deployment and

onnection of CPS to enable, for example, Industry 4.0-based man-

facturing systems [48] . Regarding cyber security in CPS, the risk

rchitecture level of the Reference Architecture Model for Indus-

ry 4.0 (RAMI 4.0) model includes vulnerabilities and threat cat-

logs, as well as safety and security components [54] . Settanni

t al. [70] describe how the Monitor-Analyze-Plan-Execute over

nowledge-based (MAPE-K) [4] reference model can be utilized to

pply anomaly detection to protect CPS. Due to the distributed na-

ure of CPS, cyber attacks can target different layers including ap-

lication, transport and control layer, which requires specific secu-

ity architectures [52] . Other approaches focus on distributed cyber

ecurity frameworks [5] . Such distributed security frameworks of-

en connect various security mechanisms such as intrusion detec-

ion systems, vulnerability scanners and anti virus solutions. There-

ore, often message queues are applied as event bus to collect in-

ormation from multiple agents [66] . synERGY follows a hybrid ap-

roach that provides an architecture that allows to utilize different

ystems to analyze data on host side and in the network. Further-

ore, synERGY includes centralized services that correlate anoma-

ies from different detection mechanisms, and enrich alarms with

rganizational context and cyber threat intelligence, as well as a

raphical user interface that provides several dashboards, where

he user on the one hand can review current security events and

n the other hand can change configurations of all incorporated
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ervices. All these components communicate via the same event

us. 

Combining open source solutions such as elastic’s ELK stack 1 

hat allow to build data processing pipelines for collecting, stor-

ng, searching and visualizing data, and Apache’s Kafka 2 or imple-

entations of the open standard publish-subscribe network proto-

ol MQTT 3 that serve as event bus, enable straightforward imple-

entation of modern security architectures for distributed systems

uch as CPS. 

.2. Data sources for cross-correlation analysis 

The synERGY architecture allows different data sources and

ultiple local agents to carry out intrusion detection, as well as

o enable automated analysis and interpretation of security inci-

ents. synERGY collects data at host and network level, as well

s information of different abstraction, com prising operational and

ontextual data and allows to apply different intrusion detection

lgorithms including decentralized and centralized approaches. Fi-

ally, cross-correlation analysis [12] is used to combine all the in- 

ormation to detect attacks and adversaries in CPS. 

Log data [10,19,88] is collectible at host level and is the small-

st common denominator of data produced by all computer sys-

ems, services and network components. Log data allows to moni-

or a computer system’s or network’s current state and is therefore

 valuable information source for attack detection in IT networks,

ncluding CPS. Well known services for collecting, distributing and

ccessing log data are syslog, journald and windows event log. 

On network level, pcaps [60] and NetFlows [32] provide infor-

ation on the communication that is going on within a moni-

ored network. However, in practice, major challenges are associ-

ted with network traffic analysis including systems to record ac-

urately timestamped network data [56] , the sheer amount of ac-

uired network data [38] , encrypted traffic [81] , and compliance to

egal requirements and privacy aspects [15] . 

Network traffic and log data are both records of events occurring

ithin an organization’s IT infrastructure [42] . During the analy-

is of the collected data, an inference to the actual occurred event

an be made. Recognized events do not have to be solely based

n log and network traffic data, but can also contain informa-

ion about existing vulnerabilities, attacks in the past or even or-

anizational context-data , e.g. employee time tracking or vacation

lanning data [25] . The outcome of existing security solutions or

nomaly-detection-systems can also help describing an event. 

One main prerequisite for cross-layer anomaly detection is ac-

urate time synchronization of all event sources [16,53] . Cross-

ayer correlation of distinct event types demands for events to be

ugmented by an accurate, globally synchronized timestamp when

he event has been recorded by a sensor and when the matching

og entry has entered the system. 

.3. Intrusion detecion in CPS 

Due to the large amount of data produced in today’s IT net-

orks, intrusion detection has become a big data problem relying

n machine learning and artificial intelligence [44,86] . The syn-

RGY framework allwos for the application of different intrusion

etection systems (IDS) [18,65] on host and network level. Gen-

rally, three methods are used in IDS: (i) signature-based detec-

ion (SD), (ii) stateful protocol analysis (SPA) and (iii) anomaly de-

ection (AD) [50,68] . synERGY aims at mitigating unknown threats
1 https://www.elastic.co/what- is/elk- stack [last accessed 4/7/2020]. 
2 https://kafka.apache.org/ [last accessed 4/7/2020]. 
3 http://docs.oasis- open.org/mqtt/mqtt/v3.1.1/mqtt- v3.1.1.html [last accessed 

/7/2020]. 

a  

a  

a  

b  

m  
nd thus focuses on AD (behavior based) approaches [8] , which

earn a baseline of normal system behavior, a so-called ground

ruth. Against this ground truth, all occurring events are compared

o detect anomalous system behavior. A drawback of AD based IDS

s the usually high false positive rate. Thus, synERGY aims at cross-

orrelating [80] alarms from different anomaly detection systems

o reduce false positives. Therefore, synERGY implements an hybrid

pproach for attack detection. 

There exist plenty of works that discuss techniques and

hallenges for intrusion detection specifically focusing on CPS

26,34,58] . Various of these IDS focus on anomaly detection and

mplement behavior-based detection algorithms [40,45] . Liu et al.

51] propose an unsupervised spatiotemporal graphical modeling

pproach to anomaly detection in distributed CPS. Harada et al.

27] describe a log-based anomaly detection that uses a statistical

ethod. Others use machine learning based methods to implement

nsupervised and semi-supervised anomaly detection [22] for CPS

36,79] . Finally, there are approaches that apply artificial intelli-

ence methods, including recurrent neural networks [20] , bayesian

etworks [43] , autoencoders [89] and deep learning [83] . 

.4. Incident response and descision making 

The modular and open design of the synERGY architecture al-

ows the application of many different IDS solutions. For handling

larms provided by different agents and to reduce false positives,

ynERGY applies a cross-correlation approach. Alert fusion is a

eavily discussed and somewhat controversial topic. Besides sim-

le fusion methods, such as binary AND, binary OR, majority vot-

ng, and weighted voting, a number of advanced approaches have

een proposed and evaluated to perform alert correlation across

IDS ensembles’, some of them even incorporating contextual el-

ments. For instance, [59] proposes a logic-based model to sup-

ort alert correlation [14] ; focuses on fuzzy logic, soft computing

nd other AI techniques; while [6] incorporate security operator’s

nowledge and preferences, which is represented using the Qual-

tative Choice Logic (QCL). Another apporach suggests to use a

ecision-theoretic alert fusion technique based on the likelihood

atio test (LRT) [24] . In synERGY, we apply numerical methods,

or example, by computing a weighted average of all available risk

cores [3] or estimating detection confidences using statistical dis-

ributions [64] , since these are easily applicable for a wide range

f anomaly detection components. Another approach, we consider

s, to account for alerts as time-series and aggregate their devia-

ions to obtain an anomaly score that describes dynamic system

ehavior [46] . 

Furthermore, incident response and decision making includes

nterpretation of alarms using threat information collected by

any different actors. Platforms, as described in [71] , provide the

ossibility to share open source intelligence (OSINT) from sources,

ncluding CERT lists (US-CERT and ICS-CERT), security-related mail-

ng lists (e.g., Seclists.org), vulnerability databases (CVE, CVSS),

hreat intelligence feeds (hailataxii.com), threat assessment meth-

ds (Open-VAS, ESUKOM), antivirus reports and security bulletin

Microsoft Security Bulletin) [76] . Besides threat information, an-

ther valuable source to interpret alarms regarding insider threats

nd stolen user credentials is organizational context that includes

nformation on access rights, employees’ vacation days and sick

eaves [25] . 

Collecting and analyzing all these relevant data in one central

ystem, can be done using security information and event man-

gement (SIEM) systems. A SIEM is an extended type of log man-

gement solution with basic features like log management, log

nalysis and graphical interpretations via dashboards and widgets,

ut also advanced features for event correlation, alerting, incident

anagement, reporting, incident investigation, and more. A SIEM

https://www.elastic.co/what-is/elk-stack
https://kafka.apache.org/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
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can collect data of different types - e.g. log data, network traf-

fic data or contextual data - via various sources and communica-

tion channels - e.g. Syslog, Agents (software client to collect log

data), Netflow or IP Flow Information Export (IPFIX). SIEMs can be

used for historical incident analysis, and - even more important

- for real time monitoring [25,42] . There exist various proprietary

SIEM solutions. However, we defined purely commercial solutions

(i.e., solutions where no free fork is available) out of scope of this

work. An exception is the utilized Security Advisor, which however

is based 100% on the ELK stack [9] and the features applied in syn-

ERGY could easily be re-implemented using ELK. 

3. Use case for cross-correlation 

Let us dig up the benefits of cross-correlation with help from a

use case in the energy domain. 

3.1. Use case outline 

Reports of cyber-attacks on energy suppliers or other operators

of critical infrastructure, including Stuxnet, Crashoverride, Black

Energy or Petya [29] , have increased in numbers recently. Regard-

ing electric power distribution grids, a modern substation includes

a number of safety-, monitoring- and control equipment. Our as-

sumption for the use case of cross-correlation is that all techno-

logically feasible security- and safety measures are implemented

and functioning correctly. However, since the life cycle of indus-

trial components in the energy industry is rather long compared

to standard IT, the existence of legacy devices having extra protec-

tion requirements is quite common. Due to these conditions, the
Fig. 1. A typical infrastructure of a utility provider. The y
pplication of anomaly detection is a promising means to further

rotect such systems. When applying advanced anomaly detection

ystems, the primary protection goals in the field of industrial se-

urity, availability and integrity, are of utmost importance. 

In particular, the real time properties of industrial systems must

ot be restricted. This is a significant difference to the classic of-

ce IT world, where confidentiality is usually a top priority [72] . A

ital concept in the area of industrial security is defense-in-depth

63] , which is based on the recognition that protecting against cy-

er attacks to industrial installations, such as the power grid in our

se case, involves all stakeholders such as operator, integrators and

anufacturers. In this shell model , the attacker must first overcome

everal protections, each representing a line of defense, to advance

o the next level. 

In addition to building a defense-in-depth concept, correlating

etected anomalies from the different layers of the shell model

s vital to detect well-hidden attackers earlier and increase the

uality of the alerts, i.e. decrease the false positive rate. From the

erspective of overall security, correlating detected network traffic

nomalies with physical security factors such as access alerts, work

rders, etc. has great potential. The synERGY use case therefore ac-

ounts for these factors. 

.2. Use case infrastructure 

According to the IEC 62,443 series of standards, the network

tructure of a modern distribution system operator is structured as

iven in Fig. 1 . This includes a system architecture with differently

rotected zones and transition points (conduits) [72] . Specifically,

he network structure is divided into five zones and interconnected
ellow stars mark weak spots on the attack surface. 
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y defined conduits: (i) Zone 1: actuators and sensors, (ii) Zone 2:

rocess network, (iii) Zone 3: supervisory control and data acqui-

ition (SCADA) system, (iv) Zone 4: office network, and (v) Zone 5:

nternet. 

In the SCADA system, substations are connected via Remote Ter-

inal Units (RTUs), multiple RTUs usually communicate with a

aster Terminal Unit (MTU). As physical media fiber optic cables,

s well as copper lines or radio links are used. Based on this, dif-

erent communication media are used and in particular network

echnology such as Ethernet. The transmission protocol between

he SCADA or control systems and the substations is the standard

EC 60870-5-104 (short: protocol 104), which is based on TCP/IP

nd is applied for basic telecontrol tasks. The protocol 104 trans-

its data in plain text without cryptographic measures. The mes-

age can only be interpreted if it is known which address belongs

o which actuators/sensors. Some of the substations also use the

EC 60870-5-101 protocol, where serial links are typically used, as

ell as ProfiBUS or ProfiNET. In this environment multiple standard

rocesses exist. In this paper, we specifically focus on the mainte-

ance processes, since they represent exceptional situations, which

re particularly hard to monitor: 

On-Site Maintenance process: The entrances to the substations

re equipped with door contacts and when the door is opened an

larm is triggered in the network control center. Therefore, the au-

horized persons are obliged to log in to the network control cen-

er before they start the maintenance work, as well as to log out

hen leaving the substation. If no person has logged on in the

vent of an alarm, a verification process becomes active. The main-

enance itself is announced prior to implementation at the grid

ontrol center and must be released by the latter in the defined

aintenance window. 

Remote maintenance process: Usually, the user can access the

ffice network after a successful two-factor authentication. From

he office network, authorized persons have access to a server,

hich regulates the access rights to the individual MTUs and RTUs.

.3. Types of attacks 

Unauthorized access to the process network or systems is one

f the biggest threats to the overall system and forms the basis for

 variety of threat scenarios. Such access can occur, either physi-

ally or logically over the network, to virtually every component

nd every domain of the network. Particularly critical is unautho-

ized access to components in the field, as an attacker may face

nly little or no physical access protection there. Access allows the

ttacker to copy, listen, or modify data that may be transmitted

nd use it for his/her own purposes. This use case specifically ad-

resses the following four attacks (also marked as stars in Fig. 1 ): 4 

1. Attacker physically breaks into a secondary substation station

and gets access to an RTU. 

2. Attacker physically breaks into a primary substation and gets

access to an MTU. 

3. Attacker gets access to the network via remote maintenance ac-

cess. 

4. Attacker gets access to the network via a compromised device,

e.g., an engineering substation or maintenance notebook. 

.4. Impact of attacks 

Attacks may have various levels of impact, depending on where

hey are carried out and for what purpose. It is usually a best

ractice to avoid an overly crisp quantification in monetary units,

r fractions of loss on market share, customers, or other numeric
4 https://www.flowmon.com/en [last accessed on 12/23/2019]. 

t  

i  

m  
eans. A practically more viable method is using an even number

f impact categories (even numbers avoid a “non-informative mid-

le category” that a scale with an odd number of categories would

ave), whose detailed definition is up to the practical application

omain [41,62,82] . 

.4.1. Disruption of communication 

The disruption or the blocking of communication between dif-

erent network components represents a common attack vector.

he goal may be to affect the availability of components or ser-

ices, i.e., a denial-of-service (DoS) attack. At the same time, the

ntention of an attacker could be to prevent the transmission of

easurements or commands sent to a device by stopping com-

unication. This could cause wrong control decisions or generally

ead to instabilities of the grid due to a lack of information, or that

ertain actions, such as switching commands, are not performed

ccordingly. 

.4.2. Eavesdropping of communication 

Attacks of this type attempt to listen to, but not change, com-

unication data. This can be done completely passively. Attacks

f this kind are not necessarily aimed only at plain text commu-

ication. For example, certain patterns of encrypted communica-

ion may allow conclusions about the information transmitted. A

ossible target of an attacker may be to obtain information about

he network and the components and technologies used therein.

nformation obtained in this way could subsequently be used for

argeted attacks. We anticipate the following types of attacks: (i)

acket sniffing attacks: The attacker uses a wire tap or a moni-

oring session on the switch to monitor the traffic on this port.

ii) ARP cache poisoning or ARP poison routing: ARP packets are

nserted into the network to change the routing or to output the

raffic on all switch ports. 

.4.3. Active manipulation of communication 

This represents a particularly severe threat if the communica-

ion data can be actively changed by an attacker or even new data

ntroduced (person-in-the-middle attack). Measured values could 

e manipulated by an attacker or outdated values reintroduced.

he following types of attacks need consideration: (i) Packet in-

ection: The attacker inserts additional packets within an existing

etwork connection. (ii) Replay attacks: A valid data transfer will

e recorded by the attacker and re-transmitted at a later point in

ime. (iii) Data manipulation: The attacker modifies the contents of

ackets during transmission. (iv) IP spoofing: The attacker brings

ackets into the network with fake sender IP addresses. (v) IP and

CP protocol attacks against network stacks of terminals or fire-

alls on the route: e.g. fragmentation attacks, Ping of Death, etc.

vi) ARP spoofing: The attacker acquires the MAC address of a le-

itimate device and uses this MAC address in a spoofed device. 

The manipulation of measured values or other status informa-

ion can lead to instability of the distribution grid. For instance, if

emand-response systems work with fake data, it may lead to over

r under supply of the network with energy [75] . Sending fake

ommands or re-importing previously recorded commands could

llow an attacker to trigger unauthorized actions on components.

t the same time, valid and authorized commands could be sup-

ressed by an attacker. If in addition a previously recorded ac-

nowledgment message of the actual recipient is re-played, the

on-execution of an action could be hidden for extended time pe-

iods. 

Likewise, an attacker could use infiltrated or manipulated data

o alter the configuration or firmware of components in order to

nfluence their behavior or bring them under their control. Another

otivation to introduce manipulated data in the communication

https://www.flowmon.com/en
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between the individual components may be to perform DoS at-

tacks. Especially considering that many network components are

embedded devices with limited resources, DoS attacks using data

flooding are realistic scenarios. Regardless of the exact purpose of

the attack, any manipulation of communications within the pro-

cess network will in any case mean the loss of reliability and trace-

ability of actions and events. 

3.4.4. Manipulation of hardware or software 

If an attacker gains access to development or administration

systems, this can allow the execution of targeted actions on var-

ious components along the entire value chain. Compromised cen-

tralized systems could also allow an attacker to deliver compro-

mised firmware to the components of the process network. In ad-

dition to widespread attacks on the SCADA system, a threat sce-

nario is that individual components are directly manipulated. This

could be achieved by changing or replacing the firmware trans-

ferred to a device. Particularly vulnerable to attacks of this kind

are components in the substations, since these are easy to access

for an attacker. In addition to manipulating the logic of the com-

ponents, another threat is changing data processed or used by the

devices, including metrics, certificates or other authentication data.

3.4.5. Malware 

Similar to other computer networks, the process network in

our use case is threatened by malware. Malware-infected systems

could allow an attacker to control other systems or tamper with

sensitive data. A special case thereof are backdoors , which allow

stealthy access to a system. On the one hand, such access can be

deliberately implemented by the manufacturer as maintenance ac-

cess, or can be created by an attacker to gain access to a compro-

mised system at a later time. 
Table 1 

Traces of attacks on the hosts (logs), in the network, or in the physical environment of a 

traces/sources further description and remarks 

failed logins series of failed login attempts (especially

permission changes changes of r/w permissions, creation of a

configuration changes configuration changes (i.e., date, user wh

creation of a new VLAN or other secur

(updates of keys, roles and access perm

implausible data comparison of sensor values with histori

time base settings deviations of the timestamps of log data 

user authentication registration of a successful authentication

authentication, e.g. used authentication

(hmac-sha1, aes, ...), session settings (T

authorization execution of commands that according to

logout/logoff The logoff time should be logged in the s

use. 

altered or deleted log entries manipulations on the network devices (r

device boot up visible in the log entries due to numerou

traffic statistics anomalous traffic patterns, captured with

another MTU 

comparison of traffic profiles time windows-based comparison of curre

on number of packages and sizes. Note

they possess similar sensors and serve

broadcast broadcast storm directly on the switch 

device authentication: failed authentication attempts of fake de

where technically possible over 802.1X

ARP spoofing independently detected by the switch an

loss of communication An interface, which goes down, is quite c

indicator that something is odd. 

overload of a communication interface e.g., by a DoS attack. This can easily be d

changes in the protocol 104 injection of custom non-standard packag

data from protocols other than 104 other ports or package formats are used 

newly added or missing devices Devices with sender IP address are visibl

found in the asset DB. 

network Port goes down All unnecessary ports are disabled by de

ethernet connection parameters 

change 

e.g. ”Eth0 NIC Link is Up 1000 Mbps Full

not use the maximum power settings, 

detected, even if the MAC has been cor
.4.6. Authentication threats 

Inadequate or insufficiently implemented authentication mea-

ures also constitute a major threat. Many components can be

hared by several people, such as, maintenance personnel could

hare a common user account. This affects the traceability and

lear assignment of actions as well as the security in general, since

uthentication data is shared between many different users. In ad-

ition, the same authentication data may be used on a large num-

er of devices. The likelihood and impact of compromising authen-

ication data is greatly increased by these circumstances. 

.5. Detectable anomalies across components and layers 

Multiple types of anomalies are already detectable with state of

he art technologies. Some of the relevant anomalies for the sys-

em given in Fig. 1 are listed in Table 1 . For discovering traces of

ntrusions and detecting single anomalies as described in Table 1 ,

arious often specialized solutions exist [1,16,58,65] . The focus of

ynERGY however is on the correlation of such ’simple’ anomalies

cross layers and components to detect complex (potentially multi-

tage) attacks more precisely on a higher level. 

.6. Contextual sources for anomaly interpretation 

For the interpretation of an attack, the following data sources

ould provide additional support for the interpretation of discov-

red anomalies. This interpretation helps to categorize anomalies

nd estimate their criticality and impact: 

• Risk management: An IT and information risk management

system according to ISO 27001, where potential risks to certain

assets are systematically assessed, is beneficial. This informa-
CPS. 

 those where a successful login follows immediately) 

 new administrator account 

o made the change and what has been changed) on switches, particularly the 

ity-related configurations, including changes to cryptographic parameters 

issions) 

cal data may lead to the detection of deviations 

of the RTUs and the SCADA server 

 of a default or administrator user, deviating parameters of the 

 method (password, SSH), SSH key fingerprint, protocol settings used 

ERM variable, ...) 

 the user role concept are not allowed 

ame way to detect ’silent’ acceptance of authorized connections for long-term 

outer, switch, firewall) or host systems 

s unique startup events 

 tools, such as Flowmon, for instance, communication from one MTU to 

nt traffic volumes (netflows) with historic data; classification of flows based 

 that traffic profiles of similar substations can be compared to one another, if 

 similar actuators 

vices in the process network through the NAC of the switches (MAC-based and 

) 

d relayed as alarms 

ommon during normal operations, but together with other anomalies a good 

etected if a station is not reachable (failure messages in the SCADA system). 

es used to manipulate stations 

e (either via ARP requests or DHCP requests) in the network which can not be 

fault; however, ports often also go down temporarily in normal operation. 

 Duplex, Flow Control: None”. Since embedded devices in particular often do 

the temporary attachment of a notebook instead of the original device can be 

rectly spoofed. 
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t  
tion can aid in both interpretation and prioritization of anoma-

lies. 

• Vulnerability Management: Systematically recorded vulnera- 

bilities and information about asset weaknesses help to prior-

itize anomalies. In other words, if a component is known to be

vulnerable and it starts to show anomalous behavior, the inves-

tigation of root causes should be of priority. 

• Asset / configuration management: The assets are docu-

mented in an IT service management system in the form of an

asset list, where the changes to the assets are also documented.

A comparison of asset data to monitoring data (e.g., devices, IP

addresses in use etc.) reveals any unauthorized changes to the

system. 

• Maintenance tasks: A link between anomalies and work-

ing hours or maintenance tasks makes sense to detect if an

anomaly could be caused by a potential attacker or whether it

was triggered by a maintenance activity. 

• Employee hours: A correlation with the actual working hours

of employees would provide an additional plausibility check,

whether the origin of an anomaly is an employee performing

a work assignment, or possibly a potential attacker. 

• Manipulation sensors: Another important external source are

physical manipulation sensors that register certain events.

These include, for example, access sensors or door contacts. If

there is no known maintenance activity scheduled, the trigger

is most likely an intruder. 
Fig. 2. Architectural overview 
• Monitoring system: Devices affected by announced mainte-

nance are declared in the monitoring system before mainte-

nance to prevent the generation of false positive alerts. 

. The synERGY architecture and its building blocks 

The overall architecture as shown in Fig. 2 consists of several

eparate components, each of which is responsible for a part of

he cross-layer intrusion detection. These components consist of

he CPS to be monitored, the agents that collect the required data,

he central data broker, a filter or normalization component, the

D systems, a centralized data repository, a SIEM system, external

atabase connections, and a reporting system. 

In addition to the components, Fig. 2 shows all interfaces be-

ween these components, as well. The lines representing individual

nterfaces are augmented by arrows that represent the schematic

ow of the data (regardless of whether pull or push-based pro-

ocols are used) - more on the workflow in Section 4.1 . A de-

cription of the main components can be found in Section 4.2 .

ection 4.3 presents an overview on interface requirements, tech-

ologies and concepts used in synERGY. 

.1. synERGY workflow 

In short, the principal synERGY workflow starts at the bot-

om left of Fig. 4.2 . Here a CPS is monitored and all kinds of
of the synERGY system. 
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5 https://kafka.apache.org/ [last accessed on 12/23/2019]. 
operational data (logs, network flows, etc.) are fetched from the

system (via sensors, proxies, agents – whatever is appropriate for

the given CPS) and fed via data diodes to the synERGY data broker

(essentially a high performance message queue). The only excep-

tion are raw network data which are directly fed into the network

AD component due to performance reasons. All other AD systems

read the fetched data from the data broker and further process it

independently. Results are stored in a central data store, together

with a filtered and normalized version of the raw operational data.

Eventually, the SIEM solution on top reads in the pre-processed

raw data from this store and enriches these with the results of

the anomaly detection systems. The SIEM further access contextual

data, including a CMDB, data from physical access systems and ex-

ternal threat data, and utilizes these sources to support the cross-

correlation process. Cross-correlation merges the single AD results

into one overall anomaly score. The concrete mechanisms are ex-

plained in Section 5.3 but involves careful weighting of each input,

a rule-based or arithmetic calculation and interpretation with the

help of contextual elements. A dashboard visualizes the final out-

put and a reporting system enables the escalation of events in case

of results that exceed an acceptable anomaly threshold. 

Notice, in Fig. 2 solid arrows represent flowing data, dashed

arrows reconfiguration commands, e.g. to reconfigure the detec-

tion capabilities of anomaly detection components ot to white-list

events. Dash-dotted lines originating from the CPS data sources re-

flect raw unfiltered and unprocessed data. 

4.2. Architectural components 

The subsequent subsections describe the tasks of the individual

components and requirements on their interfaces. Along this de-

scription, we will repeatedly refer to input and output interfaces,

processing and delivering data items and events , labeled as (1)... (9)

in Fig. 2 . 

4.2.1. CPS 

The CPS in Fig. 2 shows the system to be monitored. It con-

tains networked sensors and actuators. Networking can use dif-

ferent technologies, such as Powerline or Ethernet. This network

can be geographically distributed or concentrated in one location.

These systems are usually implemented in a hierarchical structure

with strict communication requirements resulting from limitations

of the technologies used in CPS on the one hand and from security

reasons (segmentation) on the other. Anomalies in the CPS can po-

tentially be detected either from network data or from log data of

the individual components located in the CPS. Mechanisms for re-

trieving these data depend on the components and networks that

build up the CPS, the location of installed sensors and their sup-

ported protocols. Agents, which are described in the following sub-

sections, are responsible for data retrieval, processing and forward-

ing to the relevant entities. 

4.2.2. Network agents 

The network agents provide the network data that is needed

for the network AD. These data can be acquired via port mirror-

ing, network tap, or directly at terminal devices. The collected net-

work data is processed and forwarded to the network AD via the

network data interface. In addition to converting the data to the

format required by the interface, the agent must add the precon-

figured asset identification. Network agents implement one single

interface: Output: Network data (1). 

4.2.3. Log data agents 

A log data agent is a sensor that collects data in packet form

(e.g., SNMP). All fields provided by the source must be converted

by the agent to a well-defined format and additionally augmented
ith the preconfigured asset identification. Log data agents imple-

ent one single interface: Output: Log data (3). 

.2.4. Log text agents 

In contrast to the log data agent data, the data of the log text

gent consists purely of text. Examples include, but are not limited

o reading log files, a Windows event channel, or syslog entries.

herefore, only this text line can be forwarded as a single field. 

Log text sources can supply these text lines in different en-

odings, which can also differ line-by-line for one single source.

 re-encoding to one common synERGY format is mandatory but

an lose relevant information. This is why log text agents trans-

it two copies of the log line: First the original text line, which

ust be converted to a safe format for transmission, and second

 newly encoded text. The original line format is required for the

utomated analysis, i.e., anomaly detection. The second, converted

ormat supports text search within the log lines and simplifies the

IEM representation. Log text agents implement one single inter-

ace: Output: Log text (2). 

.2.5. Data diode 

A data diode is a hardware component that unconditionally re-

tricts the flow of network data to one single direction. This feature

ecommends data diodes as mechanism of choice whenever criti-

al networked components or subsystems must be shielded from

utside access. It is important to note that this physical restric-

ion prevents protocol feedback and in particular on-demand re-

ransmission at all layers. Data diodes do not allow retransmission

f lost data records on detecting losses, neither at transport layer

data diodes block the TCP protocol), nor at application layer. 

In the synERGY architecture, data diodes decouple agents from

ystems that are located higher in the hierarchy. This means that

ensors and agents are physically protected against, e.g., access by

otentially compromised management software. Log data can flow

xclusively from agents to systems located upwards in the hierar-

hy but never vice-versa. In addition, data diodes allow data to be

ollected within one network and then forwarded to another net-

ork. This enables implementation of the same network hierarchy

n the monitoring system as in the CPS system. 

.2.6. Data broker 

Key to the architecture in Fig. 2 is the central communica-

ions component, the broker. This component performs message

orwarding and buffering between the individual components. The

ynERGY implementation and all following discussions rely on

pache Kafka 5 as broker but support its replacement by other bro-

er platforms having similar functionality. 

Apache Kafka is a distributed, partitioning and replicating ser-

ice that can be used for handling any kind of data stream. Similar

treaming platforms have three key capabilities: (1) Publish and

ubscribe mechanism on streams of records, similar to a message

ueue or messaging system, (2) storage of streams in a fault toler-

nt and persistent way, and (3) processing of streams in their ini-

ial order. Kafka is used in two large classes of applications. First,

eal-time streaming data pipelines that reliably convey data be-

ween distributed systems or applications and second, real-time

treaming applications that convert between distinct stream for-

ats and/or process them. On this behalf, Kafka is implemented as

 cluster of servers that can be distributed over several data cen-

ers. The Kafka cluster bases on the concept of topics , denoting log-

cal instances to which messages belonging to specific categories

an be sent and from which messages can be read. 

Any Kafka data entry (record) consists of a key, a value and a

imestamp. All messages exchanged between synERGY components

https://kafka.apache.org/
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se the Java Script Object Notation (JSON) format ( [7] ). JSON it-

elf lacks the schema concept known from other formats like XML,

hus synERGY makes use of JSON-Schema for validating messages

nd for verifying the compatibility of components with the syn-

RGY architecture (see Section 4.3 ). 

.2.7. Filtering & normalization 

Received log data must be normalized before storing it to sup-

ort further processing. As part of this process, relevant informa-

ion is extracted from the individual log lines and converted to a

ommon format. On this behalf templates (patterns) must be de-

ned for the used log formats. Such template defines the syntax of

ata within a given log format. Pattern matching is used to com-

are the incoming log lines with the stored formats and to extract

elevant information. On the one hand, this normalization supports

n optimized correlation of the data in subsequent analysis stages

nd, on the other hand, enables a better representation of the data

n the graphical user interface of the SIEM. 

The main purpose of filtering is to extract relevant information

uch as IP addresses, device names, date and time stamps, user

ames, status codes, error codes, actions performed, etc. from the

og entries. The filtering module assigns a local timestamp to any

eceived log data and event. This timestamp establishes an order-

ng of all incoming data that originated from potentially distinct

ources. The main benefit of the ingress timestamp is that, as op-

osed to the timestamps stored in log entries by agents, it does not

epend on time synchronization between the agents. In addition to

hese tasks, the filter and normalization component must convert

he synERGY internal asset identification numbers into operator-

pecific asset identifiers using the asset database. Interfaces: Input:

og text (2), log data (3), event (5), asset data (7), Output: Normal-

zed log data (4), event (5). 

.2.8. synERGY central data store 

The data storage serves as a central database for all collected

og and event data. In addition, the data file serves as a generator

or unique identification numbers for events, log text, and log data.

ll data stored in the data repository is accessible via the SIEM

or further analysis and visualization. This includes data search and

equential retrieval. Furthermore the Event AD and the Log Data

D require the possibility to query all data in sequential order as

oon as they have been stored in the database. Interfaces: Input:

ormalized log data (4), event (5), Output: Normalized log data

4), event (5) 

.2.9. Network anomaly detection 

Main task of the network AD module is to detect anomalies

ithin the network data and to evaluate them. Network data is

eceived by network agents using the network data interface and

orwarded to the data repository via the event interface. Another

unction of this component is to process and filter the incoming

etwork data. The processed data is forwarded to the data reposi-

ory and can be used by the SIEM to display the context or detailed

ime sequences of detected anomalies. Interfaces: Input: network

ata (1), reconfiguration (6). Output: Log data (3), event (5). 

.2.10. Event anomaly detection 

For event-based anomaly detection, known or hypothetical sce-

arios that describe a security incident must be defined in ad-

ance. These predefined scenarios are saved as patterns. During

he processing and analysis of incoming log data, these are always

ompared with the predefined patterns. If a match occurs, an event

s generated. A simple example would be a brute force attack. The

attern defined on this purpose could be, e.g., a series of 100 or

ore subsequent ‘failed login’ attempts, followed by a ‘login suc-

ess’ log line, which suggests that the attack was successful. If such
 pattern is detected in the received log data, an event is generated

nd an alarm is triggered. Interfaces: Input: normalized log data

4), event (5), reconfiguration (6), Output: Event (5). 

.2.11. Log anomaly detection 

The log data based anomaly detection processes streamed log

ata without the need of log data storage, caching or access to ref-

rence data. This way it is also avoided that sensitive log data has

o be securely stored in another location. In contrast to most sys-

ems that work with blacklisting approaches, the analysis is carried

ut with learning whitelisting instead, to recognize disturbances

r attacks that are not yet described by known blacklisting pat-

erns. For this purpose, the anomaly detection consists of two sub-

odules: (1) A module for feature extraction: this extracts all data

elds from log data as text, converts them into corresponding data

ypes for subsequent processing (e.g., the text representation of a

ate into a date value) and makes them available to the detection

odule. (2) The detection module shall try to detect the normal

tate of the system from extracted values or value combinations

nd report deviating entries. 

If a deviation is detected, a human readable message is gen-

rated, which describes the detailed cause of the anomaly. De-

ails include (a) the detection module that detected the anomaly,

.g. normal distribution change detector, (b) related detector pa-

ameters, e.g. mean values and standard deviations, (c) amount of

eviation, e.g. last set of values was within some confidence in-

erval, and (d) reference some or all log lines, which had caused

his deviation, e.g. ‘Apache response time was 12 ms’. Inter-

aces: Input: Normalized log data (4), reconfiguration (6), Output:

vent (5). 

.2.12. SIEM 

The SIEM system is supposed to act as a central interface be-

ween the overall system and the user. It offers a graphical web

nterface for the detailed representation and analysis of all existing

ata in the data repository. The user has the possibility to search

he data by means of a full text search or can display different

raphics . Through the integrated workflow management it is pos-

ible to assign detected anomalies to responsible persons and to

rack the current status (e.g. new, in progress, fixed). The integrated

sset management shows an overview of all existing systems in the

etwork and offers the possibility to configure installed agents on

hese systems. The SIEM also offers integrated vulnerability man-

gement . Vulnerabilities of vulnerability scanners (e.g. Nessus) can

e transferred to facilitate analysis of the system and show the cur-

ent security status of the network. Interfaces: Input: normalized

og data (4), event (5), asset data (7), threat data (8). Output: Re-

onfiguration (6), alarm message (9). 

.2.13. Asset database 

An asset database is accessible via the SIEM to integrate

ompany-specific context data into the system. The most rele-

ant information therein is which devices exist in the entire net-

ork and how they are configured. Among others, this can be

sed to check whether a device was unexpectedly added to or re-

oved from the network. In addition, installed software versions

nd user access rights can be checked. Interfaces: Output: Asset

ata (7). 

.2.14. Threat data 

Data on past security incidents is made available in a threat

atabase. Here, for example, external IP addresses can be queried

o check whether they have already been referenced in connection

ith a past security incident. Such databases are usually offered

s online services, which can be accessed as required. However,

ince synERGY processes a substantial amount of data, this would
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cause a lot of traffic to the outside and the database operator could

also create profiles for remote search queries. Therefore, a sepa-

rate threat database was built and integrated into the system. This

database is filled at regular intervals with data from various online

services. Thus the actual enrichment of the log data is maintained

as part of synERGY. 

A further important point of the threat data concerns known

and generally existing weak points of the used devices in the en-

terprise environment. If the system knows about a vulnerability

(which, e.g., cannot be fixed for various reasons), the system can

explicitly monitor special actions in connection with this vulnera-

bility to ensure an early detection of the exploitation of this vul-

nerability. Interfaces: Output: Threat data (8) 

4.2.15. Reporting system 

Dedicated reporting systems must be integrated into synERGY

to notify users promptly of any anomalies that have occurred or

attacks that have been detected. Use cases of the reporting system

are: email sent to a distribution list for direct mail notification of

users, alerting over a SMS gateway, alerting via the SIEM to in-

tegrate messages into normal alerting and escalation procedures.

Interfaces: Input: Alarm message (9) 

4.3. Interfaces 

Interfaces in synERGY that involve the data broker rely on

Apache Kafka as outlined in Section 4.2.6 . 

Since sensors in synERGY are potentially exposed to physical ac-

cess by adversaries, all receiving interfaces, and in particular the

ones to sensors, must accurately verify the correctness and plau-

sibility of received data. This includes verification of syntax, se-

mantics, and data origin authentication. With respect to syntax,

receivers must verify the correct sequence, count, length, and cod-

ing of data records within received messages. On this behalf, the

format of JSON messages on any interface must unconditionally

match an interface-specific, pre-defined JSON-Schema, otherwise

they are discarded. The schemes for all interfaces reference a com-

mon base schema to avoid the use of redundant or incompati-

ble definitions for identical data elements on distinct interfaces.

In terms of semantics, receivers are required to verify consistency

of the message content in the value domain, including compliance

with data value range limits. Finally, data origin authentication is

used to safeguard that cryptographically signed data records have

not been modified by adversaries on the network path between

the sensor and the receiver. 

One notable exception to the JSON-based interfaces is the net-

work capture interface (1) between the CPS network and the net-

work anomaly detection. Because of the large amount of binary

data the JSON format is not appropriate. Therefore the network

capture interface relies on the IPFIX format [11] which supports

the transfer of packet data, or, alternatively, of aggregated flow

data. Moreover, IPFIX supports the transfer of additional synERGY-

specific fields like, e.g., asset ID, and several transport settings, e.g.,

Transport Layer Security (TLS) encryption. 

The selected protocols and implemented mechanisms ensure

that the data transfer and storage within the synERGY architecture

is at all times protected from unauthorized access or misuse. 

5. Anomaly detection and interpretation 

In terms of anomaly detection, synERGY focuses on (1) network

data ( Section 5.1 ) and (2) log data ( Section 5.2 ). Results of indepen-

dently discovered anomalies are correlated and interpreted with

the help of contextual elements ( Section 5.3 ). 
.1. Anomaly detection on network data 

The designed network traffic analyser focuses on learning repre-

entations of normal network traffic, and based on this knowledge

s able to identify when unusual instances, thus anomalies, hap-

en. The analysis takes three steps: data preprocessing, building

he model using autoencoders and evaluation of the trained model

n practical scenarios. 

.1.1. Data preprocessing 

The anomaly detection system uses network flows as the ba-

is for analysis. A network flow consists of several network pack-

ts that have the same protocol type, source address, destination

ddress, source port and destination port. Flows are terminated ei-

her after a timeout, or as soon as a packet signals a connection

nd. However in our scenario, since the SCADA protocol uses end-

essly long transmission control protocol (TCP) connections, we use

etwork sub-flows, which are based on flows, but are terminated

s soon as a packet with useful content is sent in the opposite di-

ection to the current one. This corresponds to the behavior of the

equest-response model, in which one communication user asks a

uestion and the other participant answers. 

In the second step of data preprocessing, we extract features

rom analyzed flows and remove all non-numerical ones. This

eans that from the analysed features we drop information re-

ated to source and destination IP addresses, so as about source

nd destination media access control (MAC) addresses. Such selec-

ion is performed in order to force the trained model to generalise

etter and to learn rules that can be applied independently from

hese parameters. After analysis is done in such a way, we are left

ith 20 numerical features to work with in further analysis. It is

mportant to point out that extracted features do not describe the

acket content, which would not be possible with encrypted com-

unication anyway, but rather provide information about packet

roperties and distributions of the included packet properties (e.g.,

tatistics on number of incoming packets, lengths of packets, statis-

ics on inter packet arrival times, etc). 

The next step comprises data normalization, which is required

o facilitate the analysis of data and avoid misleading importance,

hich some features would have simply by having larger range of

alue. 

.1.2. Building the model using autoencoders 

To make the designed system suitable to be deployed in prac-

ice, we choose the main machine-learning component to be based

n autoencoders [23] . Main reasons for such a decision are as fol-

ows: 

1. Autoencoders are unsupervised methods that do not require

labelled data which is in line with our detection environ-

ment where most of the observed traffic comes from normal

traffic behavior. 

2. Autoencoders can learn which features are the most rep-

resentative for the representation of the normal traffic,

thus automate the feature selection procedure and sup-

port the creation and extraction of sophisticated detection

patterns. 

3. Autoencoders learn to represent the input data using less di-

mensions. They are neural networks, but similar in princi-

ple to the dimensionality reduction techniques like Principal

Component Analysis [39] and Independent Component Anal-

ysis [35] in sense that they map data from higher dimen-

sions into lower dimensions. However, unlike the other two

reduction techniques, autoencoders are non-linear which al-

lows them to capture and interpret more complex relations

between observed data. 
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4. Depending on the number of hidden layers they can be very

complex and may thus be unsuitable for constrained envi-

ronments, or they can be made relatively simple and fast

towards manageable requirements in terms of computation

complexity: time, speed, memory. The complexity can herein

be tuned. 

5. Autoencoders have been successfully applied for anomaly

detection [67,90] , so as for network traffic analysis and in-

trusion detection [37,55] . 

Data used in training and testing comes from benign traffic

nly, with the goal that an autoencoder focuses on learning to en-

ode and reconstruct benign traffic as accurately as possible. For

he training, some parameters need to be set: the number of en-

oding layers (the number of nodes), the number of encoding di-

ensions, the batch size, a loss function, and a metric. The number

f encoding layers controls how much information the autoencoder

an infer about the data. However, too many layers increase com-

lexity of a solution and both training and testing take longer. For

his reason, the selection of a suitable number of layers is a trade-

ff between complexity and detection performance. In our experi-

ents we looked into both shallow and deep autoencoders and ex-

erimentally found that a deep autoencoder with five hidden lay-

rs and following number of nodes: 15, 10, 10, 10, and 15 is the

ost suitable according to the used mean square error metric to

apture existing relations among our analyzed input data. 

The activation function is a parameter that determines the value

hat the node will send forward to the next layer based on

eighted sum of its received inputs. In our experiments we use

 rectified linear unit activation function in all layers except the

utput layer. This is the most commonly used activation function

n neural networks [47] , since it is at the same time effective and

imple. 

The loss function is used to compare the reconstructed output

ith given input, evaluate their similarity and optimize the mod-

ls parameters in order to minimize loss. In our experiments, we

se binary cross entropy as a loss function. While cross entropy is

sed as a loss function in order to obtain suitable parameters of

he autoencoder, mean square error is used as the main metric in

rder to judge the performance of the trained model and to choose

he best performing one. 

The autoencoder set up with aforementioned parameters is

hen trained using batches of training data of size 32. This means

hat instead of training and evaluating a network’s performance

ith one instance per time, blocks of 32 instances are taken each

ime and the parameters of the network are updated with respect

o all of them. Used batch size of 32 is a common parameter in

raining neural networks, as also suggested by [57] . More details on

atch optimization as a common procedure in training deep neural

etworks can be found in [23] . 

An important aspect of training anomaly detection systems

roperly is the collection of network sub-flows for a period of time

n order to train the appearance of normal flows. During the train-

ng phase, the system learns a simplified representation of a net-

ork sub-flow and tries to reconstruct the flow from this simpli-

ed representation. Then in operation, the error between recon-

tructed and original flow, called reconstruction error, is used as

n indicator of a potential anomaly. In the training phase we ob-

erved that different protocols have different ranges of a recon-

truction error. For this reason, we understood that establishing

ne threshold, as it is commonly done in anomaly detection sys-

ems, would not be suitable for our environment. Due to this rea-

on, instead of one threshold, in the training phase we learn sta-

istical properties and thresholds of each of the used protocols and

hen in the test time use this information to understand if an ob-

erved instance is far or close to the expected range. More pre-
isely, in order to understand if an instance deviates from its ex-

ected range we use Z-normalization, also known as normalization

o zero mean and unit of energy introduced by [21] . This means

hat in the training phase for each of the protocols we calculate

ts mean and standard deviation. Then, in the test time, we Z-scale

ll instances of the known protocols (normalize them with previ-

usly recorded mean and standard deviation) and if they are more

han four standard deviations distant, we declare them anomalous

nd calculate their anomaly score. We then perform scaling of the

btained anomaly score to the 0–1 range. This provides an explain-

ble output, since we are informing the system user that detected

nstances with an anomaly score closer to 1 are more unusual (and

ence suspicious) than those instances with anomaly scores closer

o 0 from our detection system’s point of view. On the other side,

f we observe instances with unknown network protocols we give

hem the highest anomaly score of 1, since this is a clear sign of

ehavior not observed in the training phase. 

It is important to point out that benign data is used for both

raining and testing of the system (no labels are needed and all

he system’s parameters were estimated directly from the be-

ign data). Also, since our detection module focuses primarily on

nomaly detection task, we opted for returning only the following

wo values: anomalous flow found (with certain anomaly score),

nd unknown protocol found. Normal flows are not output. An

verview of the described, designed and deployed system for de-

ection of network anomalies with an autoencoder at its core is

epicted in Fig. 3 . 

.2. Anomaly detection on log data 

For the purpose of detecting anomalies on log data, we apply

he IDS ÆCID [87] , which stands for Automated Event Correlation

or Incident Detection and monitors log data. ÆCID implements a

elf-learning approach that autonomously learns the normal sys-

em behavior and detects deviations from it. In this section we

ave a closer look on the concepts and components ÆCID uses.

ig. 4 depicts ÆCID’s process flow and visualizes the connection

etween the single components. ÆCID processes textual log data

equentially, i.e. line by line. It parses each log line, then applies

everal detection mechanisms and finally, if it detects an anomaly,

t produces an output that describes the finding. 

.2.1. Log line parsing 

In a first step ÆCID parses log data. Log line parsers [28] are

sed to dissect log lines so that their content is accessible for fur-

her analysis. Furthermore, parsers allow to assign event types to

og lines, which is necessary for certain types of log analysis. ÆCID

ffers two deployment options; one where data is analyzed on

ost side and one where the analysis is handled on a centralized

etwork node. Especially the first one requires a highly efficient

arser. For this purpose, common parsers that apply lists of regu-

ar expressions are insufficient, because they have a computational

omplexity of O ( n ), where n is the number log event types. Thus,

fficient log parsing that enables online anomaly detection would

equire large amounts of resources that are usually not available

n many CPS components. Hence, ÆCID uses a novel parser ap-

roach that follows a tree-like structure. The complexity of parsing

an be reduced to O ( log ( n )), which enables online anomaly detec-

ion on systems with low computational resources [85] . The parser

ree mainly consists of three building blocks: (i) static elements,

ii) variable elements and (iii) branch elements. Fig. 5 provides an

xample of a parser for ntp logs. Furthermore, because of the tree-

ike structure each part of a parsed log line can be referenced using

he path leading to the node, which supports further analysis. 

Since, services and components occurring in CPS usually do not

rovide log lines following any specific standard, there usually do
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Fig. 3. Overview of the network AD system. 

Fig. 4. ÆCID pipeline. 
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not exist any predefined parser models. Furthermore, writing a de-

tailed parser for all possible log lines is a cumbersome task. Thus,

ÆCID provides a parser generator, ÆCID-PG [85] that allows to au-

tomatically generate parsers for log data of any syntax and gram-

mar. In opposite to most other parser generators, ÆCID-PG does

not rely on distance metrics. Instead, it follows a density-based ap-

proach [78] that uses the frequency of tokens, i.e. delimited strings,

occuring in log lines at specific locations. 

5.2.2. Detecting anomalies 

Since the ÆCID approach includes semi-supervised and unsu-

pervised anomaly detection mechanisms, the process splits into a

training and a detection phase. However, the training can be ini-

tiated and terminated at any time during runtime, which allows

to extend the learned model of normal system behavior. Initially,

ÆCID-PG is applied to learn the parser model. This can be done

on pre-collected data that reflects the normal system behavior. Af-

terwards, ÆCID starts detecting anomalies. The parser itself builds

the first layer of anomaly detection. Each internal system state re-

lates to a specific log event type and each type of log event is rep-

resented by a path in the parser tree. In normal operation mode,

usually only a small number of functionalities is used and the ma-
Fig. 5. The tree describes the ÆCID parser model for ntpd (Network Time Protocol) servic

variable values, bold lines mark static parts of the data and forks symbolize branches [87
ority is not used. Hence, the parser implements a whitelist that

llows all normal log events and reports log lines invoked by ma-

icious and prohibited functionalities. Since, ÆCID-PG might have

earned a parser model that inlcudes paths of anomalous log lines,

 pre-defined hard-coded parser is used (for simple environments)

r a parser generated on a similar system on which more different

og lines occurred. Then, in a first phase ÆCID learns, which paths

f the parser tree actually occur in the monitored system. Once,

his phase is over, it starts reporting anomalies. 

The first detector, Unparsed Event Detection , reports log lines

hat do not fit the parser model, i.e. there exists no path that rep-

esents this type of log event. Hence, this kind of anomaly is the

ost severe, since a functionality has been invoked or an action

as been triggered that is not foreseen by the parser. The Parser

ath Detection works similarly. It reports log lines that match paths

f the parser, but have not been observed during the previously

escribed second part of the training. These two detection mecha-

isms reveal anomalies related to usage of malicious or unwanted

ystem functionalities or actions, which, for example, should only

ccur during maintenance, but not during normal system opera-

ion. In CPS such anomalies can be observed, for example, when

n attacker initiates configuration changes. 

The New Value Detection and the Value Combination Detection

re also semi-supervised detection mechanisms and therefore re-

uire a training phase. Both build upon the parser and make use

f the paths that lead to variable parts of the log lines. While the

ew value detection during the training learns all possible values

hat can occur in a certain locations in a log line, the new value

etection learns combinations of variable values. After the training

hase, ÆCID reports an anomaly every time it recognizes a value or

 value combination that has not been monitored during the train-

ng. An anomaly related to a new value could, for example, be an

P address that has never before connected to a CPS device. A new

alue combination can be observed, e.g., when an administrator ac-

ount carries out maintenance activities from an unusual machine.

his would lead to an anomalous combination of username and IP

ddress. 
e logs. Strings under quotes over bold lines are static elements. Oval entities allow 

] . 
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Finally, the Value Distribution Detection , is an unsupervised de-

ection mechanism. Hence, it does not require a training phase.

imilar to the new value detection and the value combination de-

ection, this detector analysis the values occurring in log lines,

here the parser allows variable input. The value distribution de-

ection first decides for each variable node in the parser, if the val-

es that occur in this location are static, ascending, descending,

ategorical/discrete, continuous or unique. Nodes that take unique

alues are not further analyzed. If the values are static, ascend-

ng or descending ÆCID raises an alarm, if the property of the val-

es changes. An example for ascending values are IDs that increase

ontinuously. If the value type is categorical/discrete or continuous,

he value distribution detection learns the probability distribution

nd its parameters or the relative frequencies with which the val-

es occur. If the detector recognizes any changes in the distribu-

ion, its parameters or the relative frequencies, it raises an alarm.

sernames and IP addresses are examples for categorical/discrete

alues. The backup user should, for example, occur less often than

ther users and might have a privilege level that could be ex-

loited by an attacker. Continuous values occur especially in CPS

nd often relate to physical sensor values such as temperature,

ressure or electric current. Furthermore, to reduce the number of

alse positives the value distribution detection offers an indicator

unction that ensures that an alarm is only raised when certain

umbers of distributions fail within a specified time window. 

.2.3. Reporting anomalies 

After the analysis, ÆCID offers several ways to report anoma-

ies. The simplest one is to write the output to the console. How-

ver, more suitable for interfacing with other security solutions is

o convert the output into JSON format and push it to a message

ueue such as Apache Kafka. This allows, for example, SIEMs to

resent ÆCID’s findings to administrators and security analysts or

o correlate it with information from other detection mechanisms

r open source intelligence. ÆCID’s output includes information on

he host, where the anomaly has been detected, the time, when

t has been detected, the raw log line, the detector that raised an

larm, the paths and the values related to the anomaly. 

.3. Cross-correlation and contextual enrichment in SIEMs 

SIEM solutions are state of the art today, but they need to pro-

ide much more than simple query mechanisms and dashboards,

f they are meant to be useful for continuous security monitoring.

owerful data analysis, in particular cross-correlation features as

roposed in this paper, should be a key element of CPS SIEMs to

elieve the human in the loop. However, the benefit of a SIEM di-

ectly depends on the quality of the data that it is fed with. We

ropose that besides basic monitoring data and the anomaly de-

ection results of network data AD and log data AD, as discussed

n the sections before, further contextual data, including organi-

ational and external sources, help tremendously to interpret AD

esults, gain insights into their root causes and rate their potential

mpact. 

.3.1. Technical integration of AD into SIEMs 

The proposed synERGY approach digests network data, log data

nd higher-level event data (often generated from the SIEM solu-

ion itself using pre-defined rules for detecting known attack pat-

erns). The integration of anomaly detection components into the

ynERGY architecture is quite simple thanks to the synERGY data

roker (a Kafka message queue instance as outlined in the archi-

ecture (cf Section 4 )). Any AD component can subscribe to nu-

erous channels of interest (logs and network data of interest-

ng segments of the observed CPS) and continuously fetches these
aw operational data from the message queue. If anomalies are de-

ected, they generate JSON-formatted messages following a prede-

ned schema and push these into a predefined AD topic of the

essage queue. Fig. 8 shows such a JSON-formatted sample alert

hat indicates a new co-occurrence of IP addresses in a particular

og event. The SIEM solution takes the raw operational data to-

ether with the generated anomaly messages to further process

oth of them, i.e., aggregate and visualize raw data and cross-

orrelate generated alerts. 

.3.2. Cross-correlation of alerts 

The key to success here is that we correlate the results of the

ifferent AD mechanisms and increase confidence in findings if

hey match each other. In other words, if two or more distinct

D systems, which process entirely different kinds of data (or the

ame data but at least with different algorithms), come to the

ame conclusion, i.e., that there is an anomaly in a certain time

rame concerning a certain system, it increases the likelihood of a

elevant event and decreases the odds for a false positive alert. We

se log data of (host) components to gain insights into their opera-

ional status and raw network data to observe communication pat-

erns – and independently detect anomalies in these sources using

ifferent systems (namely tuna from Section 5.1 and ÆCID from

ection 5.2 ). 

AD systems usually produce alerts in a structured or semi-

tructured form, as outlined in Fig. 8 , which indicates a new co-

ccurrence of IP addresses in a particular log event. Based on this

lert structure, it is possible to identify related anomaly events by

omparing their attributes, e.g., find alerts in close temporal prox-

mity that involve similar anomaly values. Selecting and weight-

ng the attributes used for comparisons typically requires domain

nowledge, but may be supported by mechanisms that rank at-

ributes by their relevance, e.g., by computing their respective in-

ormation gain entropy [2] . 

Applying more advanced cross-correlation techniques to detec-

ion results from different and in particular complementary AD

ystems enables improvement of quantitative security metrics re-

arding their accuracy and robustness. For example, the anomaly

core visible in the sample alert in Fig. 8 could be increased if

ore alerts are found that concern the involved IP addresses.

hereby, it is common to combine several metrics derived from

iverse alerts into a single or few values using numerical meth-

ds, for example, by computing a weighted average of all available

isk scores [3] or estimating detection confidences using statistical

istributions [64] . Another approach is to consider alerts as time-

eries and aggregate their deviations to obtain an anomaly score

hat describes dynamic system behavior [46] . 

We discuss the application of some of these approaches in our

oC in Section 6.3.3 . 

.3.3. Interpretation of results using contextual elements 

SIEMs are applied to interpret anomalies detected across sys-

em layers and across anomaly detection outputs in combination

ith organizational context (e.g. asset data, employee time record-

ngs etc.) and open/external threat intelligence from vulnerability

atabases, mailing lists and online platforms. 

Eventually, SIEMs are used to further correlate results on

nomalies with information from risk management, configuration

anagement, compliance management, etc. The particular chal-

enge here is to apply the right data fusion methods suitable in

PS to limit the vast amount of information to a bearable quantity

ithout losing important insights. Through applying the right mix

f data fusion and contextualization approaches, detected anoma-

ies can be interpreted more accurately, thus contributing to in-

reasing situational awareness. 
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Fig. 6. Screenshot of SecurityAdvisor’s (SA) full-text search. 
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6

The SecurityAdvisor (SA) 6 used in our architecture, is a SIEM so-

lution based on the well-known open-source ELK stack [9] that

is used for collecting and correlating all relevant network-, log-,

context- and anomaly data. This data is visually displayed inside a

web-based, graphical user interface (GUI) , as shown in Fig. 6 . For

supporting the operator or analyst the ‘Browse module’ within the

SA GUI offers various search, filter and visualization options, e.g.

a full-text search which helps finding specific messages or events

within the whole dataset. Besides the textual representation, the

data is also displayed within a timeline, which makes it possi-

ble to detect outliers in the collected and analyzed data at first

sight. Additionally, the operator can use a dashboard to create spe-

cific graphical representations (widgets) to gain further insights.

The browse and dashboard modules are both useful for analyzing

huge amounts of data and giving an overview of the whole dataset

and infrastructure. For deeper analysis of a specific event, the Se-

curityAdvisor offers a ‘Detail-View’, as shown in Fig. 7 . This view

displays a confidence and risk score, data related to the affected

assets, and contextual data, e.g. data collected from the organ-

isation’s time-tracking and task-tracking databases. For a deeper

understanding of the anomaly, all the data (network traffic, log)

which triggered the anomaly, is correlated by the backend, and dis-

played to the operator. 

Several mechanisms for alert correlation and aggregation have

been proposed as outlined in Section 2 . Our applied aggregation

technique relies on the computation of a weighted average of

the single results reported by tuna (cf. Section 5.1 ) and ÆCID (cf.

Section 5.2 ) respectively (whereas the weights can be tuned based

on operator preferences and experience [6] ). The resulting value is

further scaled by a risk value that the system calculates by tak-

ing context information (mainly asset information) into account as

follows: 

The displayed confidence value corresponds to the anomaly

score given by the anomaly detection systems, whereas the shown

risk score is calculated by the SA, using contextual elements within

the following schema: 

• Confidence 
6 http://www.securityadvisor.eu [last accessed on 01/10/2020]. 

 

o

The confidence level of the anomaly detection system is taken

into account with max. 50%, which means 100% confidence =
50% risk score. 

• Asset Risk 

The asset risk is filling up the other 50% and is itself based on

the following elements: 

• Asset Level 

Each asset is assigned a criticality level within the asset

management database. This level is taken into account with

a maximum of 33.3%. 

• Asset User 

The SA tries to identify the currently logged-in user on the

affected asset, which is only possible if the system is using

an operating system which supports users, e.g. Windows or

Linux. If a logged-in user can be identified, it is possible to

include further context data into the risk score calculation,

such as time tracking. Then the user is looked up in the con-

nected time-tracking system and determined whether the

user is present or not (e.g. on vacation). If the user is not

present, the anomaly is classified as higher risk, and there-

fore the asset risk is raised by 33.3%. If the user is not found,

the time-tracking system can not be checked, so the asset

risk is automatically raised by 33.3%. 

• Task Tracking 

For each affected asset the task-tracking database is being

checked for an open maintenance order and schedule. The

check is based on the asset, the user (if found earlier) and

the timestamp of the detected anomaly. If no entry in the

task-tracking system is found, the asset risk is raised by

33,3%. 

An analyst or operator must assume, that the anomaly is more

ritical for higher risk scores, because no relevant context data was

ound to justify the anomaly and subsequently lowering the risk

core. 

. Implementation and proof-of-Concept 

In this section we describe the technical realization and results

f our proof-of-concept evaluation. 

http://www.securityadvisor.eu
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Fig. 7. Screenshot of SecurityAdvisor’s (SA) anomaly details. 

Fig. 8. Sample JSON alert for new IP address combination in log event. 
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Fig. 9. Deployment of the synERGY architecture. 
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.1. Implementation 

The deployment of the synERGY proof-of-concept is separated

nto three areas: (i) SCADA data, (ii) context data, and (iii) SIEM &

nomaly detection. Fig. 9 shows an overview of the contents and

nterfaces between these three areas. In the following, we will de-

cribe each area individually. 

.1.1. SCADA Data 

This area involves the collection of log and flow data from

ll relevant components present in the synERGY infrastructure (cf.

ection 3.2 ). In particular, we used flows from a network tap and

ogs from a SCADA server that monitors and controls components

uch as actuators, an Identity Services Engine (ISE), a firewall,

 switch, and a primary substation’s MTU that collects and ag-

regates log messages from all connected secondary substations’

TUs. Note that most of these components do not support installa-

ion of agents for log data collection. Therefore, we use the Syslog

rotocol to transmit the data to our SIEM. 
.1.2. Context data 

Context data is technical and corporate information gathered by

n enterprise or organization. For our use case, we consider the

ollowing types of context data: (i) Open Source INTelligence (OS-

NT) that includes publicly available information on cyber threats,

ii) time tracking records that keep track of the location of em-

loyees at particular times, e.g., their presence in the office or at

 remote location, (iii) Assets that include all components and de-

ices present in the network, and (iv) Employee information such

s names, permissions, and roles. The data are stored on separate

atabases and accessed by the SIEM over a Representational State

ransfer (REST) interface. 
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6.1.3. SIEM & Anomaly detection 

Our SIEM system SecurityAdvisor is the central component of

our deployed infrastructure. The SIEM queries context data over

a REST interface, receives flow and log data through Syslog, and

stores the obtained data in two separate indices in an Elastic-

Search 

7 database. Note that whenever the syntax of the received

data is known, it is possible to extract and store particular infor-

mation in separate fields, e.g., the Syslog protocol requires that the

generation timestamp as well as the hostname of the component

that generated the message is transmitted for each log line. This al-

lows querying the ElasticSearch database for particular attributes,

e.g., retrieve all events that occurred in a certain time range or

were generated by a specific device. Unstructured information such

as the actual log message that does not follow any known structure

are stored in raw format in the ElasticSearch database. 

While some SIEMs include advanced analysis systems in addi-

tion to visualizations, we decided to separate our anomaly detec-

tion systems in favor of a modular approach that allows us to de-

velop our algorithms independent from each other. We therefore

separated the deployment of the SecurityAdvisor, the flow-based

anomaly detection system TUNA (that implements the mechanisms

described in Section 5.1 ) as well as the log-based anomaly de-

tection system ÆCID/AMiner (see Section 5.2 ) on different Virtual

Machines (VM). The anomaly detection systems query the stored

events using the ElasticSearch REST API, disclose anomalous sys-

tem behavior, and put anomaly events on a Kafka message queue,

which are then consumed and displayed by the SecurityAdvisor

GUI. 

6.2. Proof-of-Concept 

We evaluated the anomaly detection capabilities of our ap-

proach in the deployment scenario outlined in the previous sec-

tion. For this, we collected network traffic and log data for several

days while the proof-of-concept system was idle, i.e., no actions

were executed by humans and only automatic processes generated

log data. We used this data to train our anomaly detection systems

before deploying them for detection. We then carried out several

experiments based on the attack types outlined in Section 3 . In the

following, we describe one particular test case in detail and then

discuss the results of the detection. 

The test scenario assumes that an attacker was able to obtain a

technician’s notebook and credentials that can be used to connect

to the MTU over the network (cf. Section 3 ). The attacker logs into

the system and proceeds to change the configuration of the sub-

station. Finally, the attacker restarts the MTU so that the changes

become active, and logs out of the system. This attack scenario in-

volves several steps that are expected to manifest themselves in

log and flow data. In particular, the following list details the points

in time where the malicious actions were performed: 

• 12:28: Enable network adapter (windowsUp, windowsActive) 

• 12:31: Log in (serviceLogin, serviceActive) 

• 12:33: Download, modify, and upload changed configuration

(configDown, configUp) 

• 12:35: MTU restart (mtuReboot) 

• 12:37: Logout and disconnect network interface (windows-

Down) 

With this attack scenario, we expected to address several at-

tack types listed in Table 1 that are suitable for either log-based

or network-based anomaly detection. To begin with, the notebook

used by the attacker is a ‘newly added device’ identified by its IP

address. Moreover, the attacker carries out ‘configuration changes’
7 https://www.elastic.co [last accessed on 12/23/2019]. 

 

n the substation followed by an unscheduled ‘device boot up’.

rom a network point of view, these actions cause anomalous ‘traf-

c statistics’ that are subject to detection. Furthermore, they gener-

te new events at suspicious points in time that should be recog-

izable through log-based anomaly detection. Finally, the actions of

he attacker do not comply with normal user behavior and should

hus be detectable by ‘comparison of traffic profiles’. 

.3. Results 

We executed the attack on the deployed system as outlined in

he previous section. In order to adequately evaluate the capabil-

ties of our anomaly detection tools, we analyzed their detection

erformance separately. In the following, we discuss properties of

uccessfully detected attack manifestations and explain why some

alicious actions remained undetected. 

.3.1. Network traffic anomaly detection 

Since the analyzed network data does not contain packet pay-

oads (but just flow meta data; see Section 5.1 ) and the anomalies

enerated in the tests were in part only assignable on the basis of

he payload data, an analysis of the original network packet data is

erformed based on expert knowledge and anomalies, which were

esulting from the performed test procedure. Since the packet-to-

ubflow mapping is unambiguous, the packet data could be asso-

iated to the recorded flow data, the packet anomalies were trans-

erred to flow anomalies, and then compared against the results of

he anomaly detection. 

Fig. 10 shows how our network anomaly detector performed

n the designed use case. The top plot shows the timing of total

nd anomalous flow occurrences over time, the center plot visu-

lizes detected anomalies per time unit, and the bottom plot vi-

ualizes undetected anomalies per time unit. Thereby, the anoma-

ies are divided into individual categories. In addition to the data

entioned above, the respective recorded times are displayed with

ertical lines. The time differences between recorded times and oc-

urrence of the anomalies results from the minute-minute time

ecording of the events and from delays required by equipment

nd software, e.g., duration of booting. The categories serviceAc-

ive and windowsActive are used, since both the connection ser-

ice program with MTU, as well as Windows itself (for example,

NS requests), consistently cause network traffic while they are

ctive. Some events in the graph are shown with very bright ar-

as (e.g., mtuReboot, windowsUp), because these events generally

rigger very few anomalous flows. Login events are included in the

etwork data, but could not be identified from the network pack-

ts due to unknown protocols, which is why this anomaly is part of

indowsActive. Overall, Fig. 10 shows that all but windowsDown

vents were detected by network anomaly detection. This is be-

ause removing the computer from the network does not generate

etwork traffic. 

Our detection system performs to a high satisfactory level on

ost of the tested events. However, there are still some cases

here not all anomalous events could be detected. Following is

he list of them together with explanations on why such anoma-

ies could not be detected in higher number. 

• windowsDown: These are not answered address resolution pro-

tocol (ARP) requests sent from the firewall. They could not be

detected due to normal ARP requests. 

• windowsActive: ARP Requests that are normal and could only

be detected based on MAC/internet protocol (IP) address (that

we do not analyze). 

• serviceLogin: Messages exchanged via SCADA protocol that look

normal and could only be detected via deep packet inspection. 
• mtuReboot: Same situation as with serviceLogin. 

https://www.elastic.co
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Fig. 10. Network traffic anomaly detection performance in the test case scenario. 

Fig. 11. Log data anomaly detection performance in the test case scenario. 
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.3.2. Log data anomaly detection 

In contrast to flow data, it is possible to access log messages in

aw format. However, labeling log lines automatically was not fea-

ible due to the complex and diverse content of the lines. In ad-

ition, log lines that correspond to adversarial behavior often dif-

er only slightly or not at all from normal behavior. Therefore, the

ogs and disclosed anomalies were reviewed manually using expert

nowledge. 

Fig. 11 shows the results of our log-based anomaly detection

ystem. The top plot displays the total number of generated log

ines as well as the total number of disclosed anomalies aggregated

n intervals of 5 seconds. As visible in the plot, most anomalies

ccur in close temporal proximity to some of the attack steps, and

t is thus likely that they are related to the malicious behavior. A

ore detailed view is provided in the bottom plot, that separates

etected anomalies according to their origin. The coloring displays

he ratio between the amount of anomalies and total amount of

og messages, where darker colors mean that more anomalies were

isclosed in relation to the total amount of logs, and vice versa. 
A majority of anomalies are unparsed logs, i.e., log messages

ith unknown syntax (cf. Section 5.2 ). These anomalies are caused

y new events that did not occur during the training phase. In our

est scenario, adversarial actions frequently caused the detection

f unparsed logs generated by the MTU, such as logs that indicate

onnection establishment and authentication at 12:31 or logs gen-

rated during reboot starting at 12:35. 

Another important type of anomalies concern new values or

ew combinations of values in correctly parsed log messages. In

ur test scenario, the IP address of the attacker was detected sev-

ral times and by different log sources, i.e., the anomalies in the

witch and firewall logs between 12:28 – 12:31. An exemplary alert

epresenting a new occurrence of IP addresses is shown in Fig. 8 .

inally, new parser paths were detected between 12:35 – 12:36 in

he SCADA logs. They refer to log lines related to time synchroniza-

ion that did not occur during training, but could be parsed since

he syntax of their messages is known. 

Overall, windowsUp, attacker login, as well as MTU reboot were

uccessfully detected. There were no false positives among the
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disclosed anomalies. We manually searched the logs for manifes-

tations of the configuration upload and service logout, but could

not find any corresponding messages. In order to enable the gen-

eration and in turn detection of these log messages it is necessary

to set a higher logging level. In Section 7 , we will outline the issue

of an insufficient logging level in more detail. 

6.3.3. Alert correlation 

In the previous sections, we presented the detection results of

a log-based and a flow-based AD system obtained from a specific

use-case. As visible in Figs. 10 and 11 respectively, several injected

attack steps were successfully detected by both systems, making it

reasonable to consider their results in a combined form to gain a

more extensive view of the attack and its effects on the monitored

system. As outlined in Section 5.3 , there exist several possibilities

to correlate alerts on different layers. In the following, we will dis-

cuss the application of a selection of correlation techniques that

are suitable for our data. 

We first consider the groups of anomalies detected at 12:28

(windowsUp) and 12:31 (login). As mentioned before, the involved

log-based anomalies are triggered by the occurrences of new IP

addresses. The flow-based AD system on the other hand did not

consider IP addresses for detection, since they were dropped dur-

ing learning; instead, statistical deviations within the traffic meta-

data caused the anomalies. Nevertheless, the IP addresses explic-

itly identified as anomalous by the log-based system (cf. Fig. 8 that

specifies “Values” in alert) are suitable to be matched with IP ad-

dresses in flow attributes. Successful matches of such attributes in

different alerts occurring in short time windows increase the over-

all risk score displayed in the SIEM, because their combined occur-

rence is a better indicator for actual anomalies than the individ-

ual alerts alone. For example, new IP addresses could regularly oc-

cur in dynamic networks and trigger false positives, and statistical

chance could cause that normal network traffic associated with the

same IP is incorrectly classified as anomalous; however, their com-

bined occurrence in close temporal proximity decreases the prob-

ability for such misclassifications. 

Another factor that contributes to the resulting overall risk

score related to these anomalies is provided by available context

information. In our case, the IP used by the attacker is associated

with a specific notebook of a technician. We configured our SIEM

to automatically look up all attributes disclosed as anomalous in

the asset and user databases. As part of our scenario, we made

sure that these queries yield the information that the technician is

not supposed to be working during the time of attack. This makes

the observed activities even more suspicious and thus further in-

creases the risk score according to the calculation schema stated in

Section 5.3 . 

Since the MTU configuration changes and user logout are not

detected by both AD systems and thus risk score and confidence

are directly derived from the reported alerts without further calcu-

lations, we focus on the reboot of the MTU starting at 12:35 as an-

other exemplary case for alert correlation. As outlined in the pre-

vious section, the anomalous log lines generated during this attack

step could not be parsed, meaning that no attributes such as IP

addresses could be extracted for matching. For this reason, we rely

only on time-series analysis to find related alerts. As visible in the

plots, the increase of unparsed log lines in the MTU log file and

anomalous network traffic associated with the MTU occur almost

simultaneously, meaning that the respective time-series have pos-

itive correlation and the origin of the anomalies detected by both

systems are likely to have the same origin. We use this to compute

an overall risk score that is the average of all risk scores reported

by the detectors and again increase the resulting confidence of the

alert. 
. Critical discussion and economic analysis 

At this point, let us discuss results obtained from synERGY. We

rovide our lessons learned that comprise helpful insights for any-

ne planning to carry out a project in the field of anomaly de-

ection for system security. In addition, we outline the economic

nalysis of the application scenarios from synERGY. 

.1. Lessons learned from the pilot application 

Building a realistic testing environment for our use-case sce-

arios that also supports the integration and application of our

nomaly detection and correlation tools was non-trivial. During de-

elopment, we faced a number of issues that forced us to re-design

arts of our infrastructure and its configuration. In the following,

e share some of the pitfalls that may concern the application

f log-based anomaly detection in general, highlight limitations of

ur solution, and outline suggestions for improvement. 

.1.1. Pitfalls of real application 

A majority of challenges stem from the setup of the logging

nfrastructure and the configuration of the components that con-

ribute to the collected logs. Due to the fact that the outcomes

f all detection and analysis tools rely on the quality of these

ogs, it is of utmost importance to define a setup that is both re-

listic and usable for the application scenario. This mainly con-

erns the verbosity of the logs, i.e., the amount of information

hat is logged, which is configured by the logging level. By default,

any components are configured to only produce error and warn-

ng logs for the sake of reducing the amount of storage space for

he logs. However, these alert logs are already a kind of anoma-

ies themselves; unless they occur with such regularity that they

ctually document permanently repeating system behavior (which

hould be investigated and fixed by admins), they are an inappro-

riate source for any kind of anomaly detection. The reason for this

s that unsupervised anomaly detection relies on the assumption

hat anomalies are few in comparison to the whole data set ( [8] ).

herefore, informational or debugging logging levels are required

o produce logs that document the normal system behavior and

nable the generation of behavior models usable for the detection

f suspicious log events within that data. Since the desire to pro-

uce these fine-grained logs is usually met with resistance from

perators due to limitations of storage capacity, we suggest to ap-

ly anomaly detection tools that process each log line only once

t their generation, but do not require the whole data to be stored

ermanently. 

Even adequately configured logging levels do not guarantee that

he generated logs are suitable to be used for detection. For ex-

mple, while all other components produce logs in the range of

econds, the switch (Process Network in Fig. 1 ) aggregates all oc-

urring events in time windows and prints a summary only every

ew minutes. This causes a delay in the detection of anomalous

vents from this log source, impedes counting events in arbitrary

ime windows for event-frequency-based anomaly detection, and

omplicates the derivation of correlation rules spanning over mul-

iple components, e.g., event A observed at component X implies

hat event B has to occur at component Y within a certain amount

f time. If technically possible, logs should therefore be produced

t the finest available resolution and as close to real-time as pos-

ible. 

Another problem is the generation of realistic normal behav-

or, that is essential for the evaluation of any anomaly detection

ool. Monitoring the system in a completely idle state is suitable

o collect information on its background noise, e.g., logs that are

roduced by automatically scheduled tasks such as cron jobs. How-

ver, models trained only on this data are likely to suffer from high
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alse positive rates, because almost every manually executed action

n the system is recognized as an anomaly. We therefore suggest

o first observe the behavior of a productive system, derive and de-

ne the main aspects of what is considered normal behavior, and

nally implement a script that simulates user interaction and can

e executed during training to generate more representative nor-

al system behavior than background noise alone. 

We also experienced difficulties with the interpretation of logs

s well as artificially raised anomalies. Domain knowledge on the

etup and purpose of the components in the system environment

merged as essential information for understanding the processes

unning on the machines as well as their manifestations in the

ogs. However, this knowledge is often not available in the orga-

ization running the machines, or not accessible to the analysts.

his lack of ground truth makes manual validation of derived mod-

ls after training as well as evaluation of the detection capabilities

roblematic. In particular, a differentiation of logs that correspond

o normal behavior during attack phases and logs that are known

o correspond to actual malicious behavior would be needed. One

olution is to shift from log-based evaluation, where every log

vent is considered, towards a less detailed time-window-based

valuation, where only time windows that contain anomalies are

onsidered. 

Finally, logs are high-volume data produced in fast rates, thus

equiring extensive resources for computation and transmission.

ack of high-performance computing machines will inevitably lead

o delays or even breakdowns. We recommend to deploy machines

hat can handle the high loads. 

.1.2. Detection capabilities 

Our experimental results suggest that log-based and flow-based

nomaly detection tools are suitable to detect the applied attacks.

og-based detection is in particular effective for the disclosure of

ew events, i.e., events that have not been observed in the train-

ng phase and are thus not part of the parser model. On the other

and, detection based on concrete parameter values is a promising

echnique for disclosing more stealthy attacks with minimal mani-

estations, but is also subject to higher false positive rates, because

arameter values are usually more likely to show random fluctua-

ions. This situation improves when the detection scope is manu-

lly limited to certain parameters, combinations of parameters, or

vents, when configuring the detectors. 

Furthermore, our experiments showed that anomalies reported

y two different AD systems are suitable for correlation. In par-

icular, we were aiming to provide system administrators two val-

es that represent an aggregated risk level of the whole system

nd the trust in this prediction, as visible in the top left of Fig. 7 .

hereby, our applied aggregation technique (cf. Section 5.3 ) relies

n the computation of a weighted average of the reported anoma-

ies as well as several other input values from diverse sources,

ncluding contextual databases providing asset risk estimations.

owever, since contextual risk scores are relatively static, it is clear

hat the expressiveness of the aggregated risk score and confidence

trongly depend on the validity of the anomalies and their severity

lassifications reported by the deployed AD systems. In the follow-

ng, we discuss some issues that we faced with this matter and

uggest possible solutions. 

Among the drawbacks of our log-based detection tool is that a

nomaly score can only be assigned to certain types of anomalies.

he reason for this is that it is difficult to extract semantic infor-

ation from the anomalies, e.g., it is not trivial to decide whether

 new IP occurring as a parameter value depicts a more or less se-

ere violation of the learned model than a sequence of log events

ccurring in incorrect order, or any other form of anomaly. One

ossible solution is to manually assign a weight to specific detec-

ors, for example, we consider unknown events as the most se-
ere anomalies due to the fact that they violate the structure of

he known log format, which means that it is not possible to re-

ate them to any known event, making manual review always nec-

ssary. Another possibility is to incorporate external information

o compute the score, for example, organizational context data (cf.

ection 3 ). 

Similar to logs, we assign the maximum anomaly score to flows

f unknown protocols. Other than that, the structured format and

vailability of semantic information within flow data makes com-

uting an anomaly score simpler than for log data, because the di-

ergence to expected flows can be numerically expressed through

tatistical methods. 

When it comes to our proposed network analysis approach, it

s important to understand how frequently the detection system

as to be fully updated to remain representative (and thus provide

igh detection performance). The exact answer to such a require-

ent is strongly dependent on the application-specific scenarios

here the systems are used. In general, anytime it is observed that

etwork traffic used for training is not fully representative of the

xpected benign behavior of the monitored system, the detection

ystem would profit from a repeated training phase in which in-

tances of newly observed benign behavior are taken into account.

Another set of challenges for successful usage of the designed

etwork traffic analyzer is related to the selection of suitable pa-

ameters and their fine-tuning. In our detection scenario we exper-

mented with different values for detection parameters, but most

f these are dataset and use-case specific, and accordingly the sys-

em would need to be retrained once placed in a new detection

nvironment. 

.1.3. Maintenance effort 

Systems are subject to change over time. On the one hand,

omponents are removed and added to the network, on the other

and, software updates may affect the logging behavior. In any

ay, self-learning anomaly detection tools are only partially able to

dapt to such changes. We pursue the following approach: When

n anomaly is detected, e.g., a new IP address occurs as a param-

ter value, an anomaly is raised and the analyst is given the op-

ortunity to declare it as benign (a false positive) or malicious. In

ase that the event is benign, the IP address will be white-listed,

.e., it is added to the model of normal behavior and will not be

etected in the future. This reduces the effort to handle false pos-

tives to a minimum. However, analysts are also required to reg-

larly check whether entries in the white-lists become outdated,

nd adapt them if necessary. Otherwise, attacks could be purpose-

ully designed to conform to these outdated white-lists, thus cir-

umventing detection. 

.2. Economic analysis of cross-correlation 

This section describes exemplary economic analysis results for

ifferent application areas of attack detection. Examples of such

ossible application areas are listed below: 

• Protection of individual systems (e.g. photovoltaics or data con-

centrators) 

• Protection of individual grid sections (e.g. hydro-power plants;

avoidance of power outages) 

• Protection of entire networks (e.g. avoidance of power outages

in the city of Linz or Upper Austria) 

To evaluate application areas of attack detection economically,

he achievable benefit is put in relation to the expected costs (in-

estment and operating costs of the installed sensors). In this re-

pect, the following cost factors are of central importance: (i) Cap-

tal and operational expenditures of sensors, and (ii) operational

xpenditures (OPEX) of false alarms. 
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Fig. 13. Cost-benefit analysis results. 
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r  

e  
Capital and operational expenditures of sensors: To estimate the

possible applications for the detection of attacks, the costs of the

components used must be compared with the achievable advan-

tages (e.g. avoidance of a power failure). The total investment costs

of the technologies used (e.g. Test Access Ports or Switched Port

Analyser) are made up of the direct and indirect investment costs.

Direct investment costs refer to an operating resource itself (e.g.

installed sensor), indirect investment costs cover the other one-off

costs associated with the respective operating resources (e.g. in-

stallation, replacement of components, etc.). 

These total investment costs (as the sum of the direct and indi-

rect investment costs) are finally converted into annual payments

by multiplication with the annuity factor. To these annual capital

expenditures (CAPEX) [31] in a further step the annual OPEX of the

used resources are added [13] . 

OPEX of false alarms: As with any statistical test, false positive

and false negative alerts are ultimately unavoidable. The economic

cost-benefit ratio achieved by synERGY to some extent depends on

how the system is embedded in organizational processes, and how

much disruption, and thereby implied cost, a false alert may cause.

Estimations of these costs are based on error rates related to sen-

sor detection accuracies (false-positive rates of sensors), as well as

hard- and software reliability, and also the ratio of human-error

in decision making. We conducted a cost analysis based on the

following assumed (simplified) alert treatment process that starts

with a sensor sending an anomaly notification. Upon arrival of an

alarm, the operator of the SIEM system first decides on the po-

tential presence of a real or a false alarm (triggering of the sensor

despite regular behavior of the system, indicated by further sen-

sors or implied by the overall system behavior). If the alarm is

suspected to be real, the report is sent to a person in the tech-

nical administration who will examine the problem on site (costs

for travel and on-site investigation of the cause of the alarm). Oth-

erwise, there will be no further action or involvement of person-

nel. The technician checks the cause of the fault, which refutes the

suspicion of an incident (a ”false-positive” that the SIEM operator

could not recognize), or there is a fault in the sensor, which the

technician rectifies. These costs add to the operative costs in the

evaluation, whereby their variation results in bandwidths of the

cost-benefit ratio. 

While this presumed treatment is rather generic (and as such

admits even a simple analytic computation of the costs based on

a probability analysis using the underlying workflow that is es-

sentially like a decision tree), the synERGY project features a cus-

tomizable simulation component (see Fig. 12 ) to model any more

general and arbitrarily complex workflow of alert treatment, in-

cluding signals from multiple sensors, multiple SIEM operators,

queue-based task assignments to groups (following a first-come
Fig. 12. Alert treatment cost simulator (example screenshot). 
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s  
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a  
rst served or a random service regime), multi-level support struc-

ures and several others. The inner model used to simulate the

reatment is a system of coupled automata and an event-based

imulation, adapted from [69] . 

.2.1. Exemplary economic analysis results 

The previously mentioned bandwidths are calculated via

pplication-specific break-even points [84] considering low and

igh cost (CAPEX and OPEX). A break-even point in this context

epresents the intersection of the cost (e.g. low cost if sensors

re realized by Switched Port Analysers) and benefit function for

 specific attack detection application (e.g. protection of individ-

al power plants). It furthermore indicates, how often an attack

ust be fended off in the respective application area to cover the

osts through the achievable advantages. For the exemplary areas

f attack detection discussed above, the results shown in Fig. 13

which is based on results of the synERGY project) apply. According

o the performed calculations, the left edges of the bars represent

 low-cost implementation (CAPEX and OPEX) as well as the right

dges a high-cost implementation (CAPEX and OPEX) of the attack

etection system. It can be seen that the protection of individual

ystems would require successful attack defense within the time

andwidth of weeks (protection of Photovoltaic plants) to months

protection of data concentrators). This bandwidth increases to sev-

ral years or a decade if high economic losses caused by power

ailures (e.g. in Linz or Upper Austria) can be avoided. 

.2.2. Derived findings 

The actual number of attacks fended off during the pe-

iod under consideration has a significant influence on the cost-

ffectiveness of attack detection. There is therefore a risk of high

unning costs if the attacks are not carried out with sufficient fre-

uency. The height of the CAPEX for the sensors used has a very

trong effect on the economic efficiency of the system. The higher

he CAPEX, the less any OPEX variations have an effect on the

reak-even points. It does not seem realistic to build a system to

rotect individual components, as many attacks per year would

ave to be detected and averted to cover the resulting costs. If,

owever, significant benefits are achieved (e.g. by avoiding large-

cale power failures and the associated economic costs), an eco-

omic operation is reachable for a corresponding frequency of at-

acks. 

. Conclusion and future work 

In this paper, we reported on the result of a three year’s re-

earch project centered on intrusion detection in cyber-physical

ystems. We described the differences to common enterprise IT

nd introduced an architecture making use of numerous anomaly
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etection systems capable of processing the various types of data

logs, network data, event streams etc.) in a CPS that can en-

ble effective attack detection and interpretation (through the use

f contextual elements). Our main contribution is not about the

ore anomaly detection methods, but showing the various ways on

ow the integration of different components (even from different

ources) could work to enable cross-correlation and a demonstra-

ion of the added value. In order to realize the synERGY approach,

e implemented a proof-of-concept system following the designed

rchitecture, and challenged it in a realistic, yet illustrative, way

o show its potential with respect to intrusion detection in a util-

ty provider’s infrastructure. We discussed the numerous pitfalls

hen it comes to the implementation and deployment of such an

D system and highlighted the importance of cross-correlating AD

esults from distinct detection systems, as well as the correlation

ith organizational context to enable the proper interpretation of

ecurity events and reinforce the significance of reports. 

Even after the three year’s project there remain numerous open

esearch challenges. Smaller near-term goals relate to how such

 system can be set into operations more efficiently, i.e., create

arsers, rules and set parameters with minimum human involve-

ent. This is important to lower the entry barrier for interested

takeholders of the synERGY system. Currently, experts are re-

uired to validate and tune the parsers for complex log data, train

he different machine learning models and come up with initial

ule sets for the detection engines. The medium-term goal is to

ake the operational phase of the synERGY system economically

easible by involving even more organizational knowledge to in-

erpret anomalies more accurately, which is the basis for justified

ecision making. Our long-term goals are centered on improving

ynERGY’s ability to adapt to changes in the monitored environ-

ent, which means that the detection and interpretation must be

hanged too (including, models, learned parameters, weights etc.)

preferably in a (semi-)automatic manner. 

Considering future advanced use cases of cyber-physical sys-

ems with potentially large attack surfaces combined with high

riticality for the general public, especially in the smart grid area

74] , the application of a system like synERGY gains even more im-

ortance. 
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