
A User and Entity Behavior Analytics Log Data Set
for Anomaly Detection in Cloud Computing

Max Landauer, Florian Skopik, Georg Höld, Markus Wurzenberger
Digital Safety & Security

Austrian Institute of Technology
Vienna, Austria

firstname.lastname@ait.ac.at

Abstract—Cyber criminals utilize compromised user accounts
to gain access into otherwise protected systems without the
need for technical exploits. User and Entity Behavior Analytics
(UEBA) leverages anomaly detection techniques to recognize such
intrusions by comparing user behavior patterns against profiles
derived from historical log data. Unfortunately, hardly any real
log data sets suitable for UEBA are publicly available, which
prevents objective comparison and reproducibility of approaches.
Synthetic data sets are only able to alleviate this problem to some
extent, because simulations are unable to adequately induce the
dynamic and unstable nature of real user behavior in generated
log data. We therefore present a real system log data set from a
cloud computing platform involving more than 5000 users and
spanning over more than five years. To evaluate our data set for
the scenario of account hijacking, we outline a method for attack
injection and subsequently disclose the resulting manifestations
with an adaptive anomaly detection mechanism.

Index Terms—log data, anomaly detection, user and entity
behavior analytics

I. INTRODUCTION

Humans are often considered the weakest link in cyber se-
curity. This claim is corroborated by recent studies suggesting
that around 82% of data breaches involve a human factor,
for example, through stolen credentials and subsequently com-
promised accounts [1]. Today’s omnipresence of cloud com-
puting exacerbates this problematic situation as both external
adversaries as well as insider attackers have easy access to
a large amount of possibly confidential information [2], [3].
Unfortunately, commonly applied signature-based detection
approaches that search for known indicators of compromise are
often unable to recognize this kind of intrusion as no technical
vulnerabilities are exploited and only legitimate actions are
executed, such as viewing or modifying files.

As a consequence, security researchers and analysts resort
to User and Entity Behavior Analytics (UEBA), which aims
to disclose malicious users that exhibit inherently different
behavior patterns than legitimate system users and can thus be
detected even when the exact attack scenario is not known be-
forehand [4]. Thereby, UEBA usually relies on the assumption
that the majority of users consistently follows similar routines
over an extended period of time so that it is possible to derive
behavior profiles for their regular activities. Intrusion detection

approaches compare these baselines with the continuously
monitored user behavior and report anomalies when users
diverge from their usual behavior patterns to inform operators
about potential misuse of the respective accounts [5].

Log data permanently preserves a chronological list of
almost all activities carried out by users on monitored systems
and is thus one of the main sources for generating and evalu-
ating user behavior profiles [6]. Thereby, commonly available
parameters in log events include timestamps, types of action
(e.g., opening a file), user identifiers (e.g., mail addresses),
and even contextual information such as readings from sensors
within devices (e.g., global positioning system) [3]. Given
that these are highly personal data, it is not surprising that
organizations are reluctant to make any real log data sets
publicly accessible to avoid privacy violations. Accordingly,
evaluations are frequently carried out on private data sets that
prevent reproducibility of the presented results.

To overcome this obstacle, researchers therefore resort
to synthetic log data generated by simulations in testbeds.
Synthetic data generation has some benefits over real infras-
tructures when it comes to scientific evaluations, including a
more flexible technical environment, the possibility to launch
arbitrary attacks, and a reliable ground truth as there are no
unknown activities [7]. However, we argue that comprehen-
sive evaluations should additionally consider real data as a
means of validation, because simulations may not sufficiently
represent the intricacy and diversity of real system behavior.
In particular, simulated normal user behavior is often modeled
in a simplified way using scripts that automatically carry out
similar actions indefinitely, thus false alarm rates achieved on
synthetic data may be disproportionately low considering the
more erratic user behavior that is sometimes encountered in
real systems [8]. In addition, real log data is affected by long-
term changes such as modifications of system infrastructures
and logging configurations that are neglected or not relevant
when generating log data in short-term simulations; however,
these sources of data instability need to be taken into account
when designing anomaly detection systems. In the past, au-
thors manually modified existing log data sets to adequately
reflect such dynamic changes [9]. We summarize the benefits
and issues with synthetic and real log data in Table I.

We present CLUE-LDS (CLoud-based User Entity behavior
analytics Log Data Set) that is published alongside with978-1-6654-8045-1/22/$31.00 ©2022 IEEE

TABLE I: Differences between synthetic and real log data sets

Aspect Synthetic log data Real log data
Generation (−) Time-consuming (+) Low effort
Normal/benign
user behavior

(−) Limited by scope
of simulation

(+) Realistic

False alarm rate (−) Possibly too low (+) Accurate
Attack
Injection

(+) Execution of any
attacks possible

(−) Restricted in
productive systems

Ground truth/
Labels

(+) Reliable and
(semi-)automatic

(−) Unreliable and
manual/unavailable

Publication
of data set

(+) Simple as no
sensitive data involved

(−) Needs authorization
and anonymization

Flexibility (+) Easy to configure
and extend testbeds

(−) Limited ways to
change infrastructure

this paper. The data set spans over five years and contains
legitimate log events generated by more than 5000 distinct
user entities. We overcome the issues arising from real log
data sets (cf. Table I) by anonymizing sensitive data without
loss of information and proposing a strategy to inject and
label anomalies representing compromised accounts in the data
set. We also present an illustrative evaluation of an anomaly
detection approach that is capable of handling the dynamic
nature of the data. We summarize our contributions as follows:
• A new open log data set for UEBA1,
• an analytical investigation of the presented data set,
• a method to inject anomalies into the data set, and
• a benchmark evaluation for dynamic anomaly detection2.
The remainder of the paper is structured as follows. Section

II reviews existing log data sets. Section III describes how the
data set was collected and explains the overall structure of the
data. We provide an analysis of user behavior patterns in Sect.
IV. In Sect. V we explain our approaches to inject and detect
anomalies in the data. We discuss our main findings in Sect.
VI. Finally, Sect. VII concludes the paper.

II. RELATED WORK

There is a great need for publicly available log data sets
in the research community centered around anomaly detection
and UEBA for cyber security applications, however, only few
data sets are publicly available [8], [10]. For example, Kholidy
et al. [11] describe the generation of a data set for intrusion
detection in cloud computing, but unfortunately do not make
their data accessible. As a consequence, anomaly detection
approaches such as the one by Ganfure et al. [12], which
uses count vectors on user-specific system operations (e.g.,
creating, modifying, or deleting files) to differentiate malware
behavior from otherwise normal user activities, frequently rely
on private data sets that prevent reproducibility. Others utilize
outdated web log data sets that may not be representative for
modern system environments anymore [13].

To overcome these problems, researchers recently focused
on synthetically generating log data sets in test environments
where arbitrary attacks can be launched. For example, Uetz et
al. [10] use automated scripts to simulate normal user web

1The log data set is available at https://zenodo.org/record/7119953
2Scripts for injecting and detecting anomalies are available as open-source

code at https://github.com/ait-aecid/clue-lds

browsing and collect log data from services and operating
systems of client computers. Thereby, they model relevant
parameters and distributions after real observations. Similarly,
Landauer et al. [7], [8] use state-machines to simulate normal
user behavior and compare the generated system log data with
logs from real infrastructures. To generate the ADFA log data
set, Creech et al. [14] launch attacks during normal system
utilization, including browsing and document preparation, and
collect the generated system call traces. Sharafaldin et al.
use abstracted profiles from real user behavior to generate
and publish multiple data sets for network traffic analysis,
including CICDDoS2019 [15] and CICIDS2017 [16]. These
synthetic log data sets are usually sufficient when analysis
focuses on attacks and normal user behavior only serves as
background noise. However, the data sets are only of limited
use for UEBA, which relies much stronger on the presence of
realistic user behavior patterns in the logs.

Some of the most widely used data sets for log-based
anomaly detection are the HDFS [17], BlueGene/L (BGL)
[18], Thunderbird [18], OpenStack [19], Hadoop [20], and the
data sets from Loghub [21]. Other than most synthetic data
sets that usually only span over a few days, they are collected
in lab settings and sometimes have significantly longer time
spans of around 200 days, thus facilitating analysis of long-
term system behavior. However, the problem with these data
sets is that they do not involve user identifiers, but instead
focus on files or processes. Accordingly, they have little value
for UEBA. To overcome this gap, we outline the collection of
an UEBA data set in the following section.

III. LOG DATA GENERATION & STRUCTURE

This section explains collection and processing of the log
data set, and describes the structure and contents of the events.

A. Collection

The data set was generated at the premises of Huemer
Group, a midsize IT service provider located in Vienna, Aus-
tria. Huemer Group offers Infrastructure-as-a-Service solutions
for enterprises, including cloud computing and storage. In
particular, their cloud storage solution called hBOX3 enables
customers to upload their data, synchronize them with multiple
devices, share files with others, create versions and backups
of their documents, collaborate with team members in shared
data spaces, and query the stored documents. The hBOX
extends the open-source project Nextcloud4 with interfaces and
functionalities tailored to the requirements of customers.

The log data set was collected by technical staff responsible
for maintaining the hBOX. At the time of collection, more
than five years of log data produced by the hBOX hosted
within the organization were available - precisely, a total of
50,522,931 log events that span from 2017-07-07 to 2022-09-
29 (1910 days). The logs were not altered or filtered in any
way during collection; however, the data had to be anonymized
for publication as described in the following section.

3Huemer Group website, https://www.huemer-group.com/hbox/
4Nextcloud website, https://nextcloud.com

B. Anonymization

The original log data set contains sensitive information, such
as names of users and files, that prevent publishing for data pri-
vacy reasons. These attributes were therefore anonymized by
replacing them with combinations of words randomly selected
from dictionaries. Thereby, we ensured that the replacement
of values is consistent across all attributes so that the same
pseudonyms are used for identical values no matter where they
occur. This ensures that no information is lost when relating
activities to specific users, which is an often criticized factor
in data sets that suffer from heavy anonymization [22].

We split paths at slashes before anonymizing their parts
individually so that directory hierarchies are preserved. For
example, the paths “/home/user/example” and “/home/user/-
folder/example” are anonymized as “/A/B/C” and “/A/B/D/C”
respectively. Note that some attributes in the data set were
already anonymized as they use an internal numeric identifier
rather than actual names. These attributes were left unchanged.
Some events also involve the geolocation of the user based on
the IP address associated with the event5. Since location accu-
racy is too low to identify individual users, the corresponding
attributes were also left in the data without modifications. The
following section shows a complete list of all event attributes.

C. Event Attributes

The log data are a chronological sequence of semi-
structured events in JSON format. Table II shows all attributes
that occur on the first level of the JSON objects as well as a
sample value for each attribute and a brief description. The
main attributes relevant for forensic analysis of user behavior
are “type”, “time”, and “uid”, as they describe what action
was carried out, when it took place, and who is responsible
for it. Attribute “params” is a nested object that contains many
additional attributes that are specific for each event type, which
we describe in more detail in the following section.

Some of these attributes are optional and do not necessarily
occur in each event. In particular, this concerns the geolocation
information which is only available for around 0.25% of all
events. Figure 1 shows geolocations present in the data set
and indicates their respective occurrence frequencies by colors.
Given that Huemer Group and many of their partners are
located in Austria it is not surprising that a majority of the
users access the hBOX from cities in Austria and specifically
its capital Vienna. Note that the plot shows central Europe as
this is the origin of most accesses and that there are also other
geolocations present in the data set not visible in the plot.

D. User actions

As outlined in the previous section, each log event involves
a “type” that corresponds to a specific action carried out by
a user. Table III provides an overview of all 49 unique event
types that we group into (i) Administration for events such
as changing settings that are usually carried out by privileged
users, (ii) Comments for adding and deleting comments, (iii)

5MaxMind was used for IP localization, https://dev.maxmind.com/geoip

45°N

46°N

47°N

48°N

49°N

50°N

51°N

52°N

 0° 5°E 10°E 15°E 20°E
Longitude

La
tit

ud
e

Fig. 1: Geolocations of users generating events. Colors indicate
event frequencies (yellow: <50, orange: 50-499, red: 500-
4999, dark red: >5000).

Files for all events that handle files, (iv) Groups for creating
or changing user groups, (v) Authentication for logging in and
out, (vi) Sharing for events where links are shared between
users, and (vii) Users for creating or changing user accounts.

The table also shows the attributes of the nested “params”
object (cf. Table II) that are specific for each event type. We
mark optional attributes with an asterisk. Moreover, we use
italics to indicate attributes that are anonymized as described in
Sect. III-B. Most of the non-anonymized attributes are numeric
representations of categories, for example, “itemSource” or
“permissions”. Table III furthermore provides examples for at-
tributes that contain values with semantic meaning in brackets
next to the parameters. Note that there are also a few special
attributes such as “date”, which contains a formatted date
string, or “deletedShares”, which is a nested object comprising
several more attributes similar to those of the Sharing events.

IV. DATA ANALYSIS

In the previous section we stated general properties of the
log data set. This section explores user behavior patterns that
are relevant for profiling and anomaly detection.

A. Static Analysis

Each event in the log data set can be attributed to a specific
user through the attribute “uid”. Accordingly, it is simple to
derive usage statistics for single users and thus form profiles.
For example, users may be differentiated between employees
who use many functions of the hBOX over a long time span
and thus produce higher numbers and more diverse log events,
and external users who are just accessing a shared file once.
Note that it is also possible to correlate user names with IP
addresses as both of these anonymized values are present in
events of type “login attempt”; however, we consider distinct
users only by their “uid” in the following for simplicity.

Figure 2 shows aforementioned characteristics measured by
the number of unique event types, total number of events,
number of days where at least one event is generated, and
“role” attribute, where each point represents a single user. The
plot shows that most users generate less than 1000 events with
less than 10 distinct event types, while comparatively few users

TABLE II: Attributes of the semi-structured log events

Attribute Example Description
id 1 Unique log line identifier that starts at 1 and increases incrementally.
time 2021-01-01T00:00:02Z Time stamp of the event in ISO format.
uid old-pink-crane-sharedealer Unique anonymized identifier for the user generating the event.
uidType name Specifier for uid, which is either the user name or IP address for logged out users.
type file accessed The type of the event. Table III lists all event types present in the data set.
params Diverse parameters Dictionary containing event parameters. See Table III for a detailed enumeration.
isLocalIP true Optional flag for event origin, which is either internal (true) or external (false).
role technical Optional user role: consulting, administration, management, sales, technical, or external.
location.city Vienna Name of the city where the request originates from.
location.countryName Austria Name of the country where the city is located.
location.countryCode AT Abbreviated name of the country.
location.region 9 Regional code of the location.
location.regionName Burgenland Name of the region (e.g., state or province) of the location.
location.isInEuropeanUnion true Specifies whether the location lies in the European Union (true) or not (false).
location.continent Europe Name of the continent where the country is located.
location.postalCode 1040 Postal code of the city or district.
location.metroCode 754 Metro code of cities within the United States.
location.latitude 48.1535 Latitude of the location information.
location.longitude 16.3855 Longitude of the location information.
location.accuracyRadius 50 Accuracy of the location estimation in kilometers.
location.timezone Europe/Vienna Name of the time zone of the location.

TABLE III: Overview of log event types and their respective parameters

Group Event type Parameters

Administr.

admin settings changed Diverse parameters (e.g., “value”: {“level”: 1110} , “key”: “loglevel”, “app”: “logger”)
app disabled app (e.g., “quota warning”)
app enabled app
command executed arguments* (e.g., “files:scan <path>”)
email changed email*, user
fullname changed fullname, user
password changed user
permission changed itemSource, itemType, path, permissions, shareType, shareWith*, uidOwner
public share accessed errorCode (e.g., “404”), errorMessage* (e.g., “Wrong password”), fileTarget*, itemSource*, itemType*, token*,

uidOwner*
public share expiration date changed date*, itemSource, itemType, uidOwner
public share password changed disabled (e.g., “False”), itemSource, itemType, token, uidOwner
public share update permission itemSource, itemType, path, permissions, shareType, shareWith*, uidOwner
version deleted path, trigger
version restored node*, path, revision
quota changed quota (e.g., “1 GB”), user

Comments comment added id, message, object, path
comment deleted id, message, object, path

Files

file accessed path
file copied newpath, oldpath
file created path*, run*
file deleted path, run
file renamed newpath, oldpath
file updated path, run*
file written path*, run*
deleted from trashbin path
restored from trashbin filePath, trashPath

Groups

group created group
group deleted group
user became groupadmin group, user
groupadmin removed from group group, user

Auth.

login attempt loginName*, successful* (e.g., “False”), user*
login failed ip, user*
login successful user
logout occurred -

Sharing

shared email fileSource, fileTarget, id, itemSource, itemTarget, itemType, permissions, shareType, shareWith, token, uidOwner
shared group fileSource, fileTarget, id, itemSource, itemTarget, itemType, permissions, shareType, shareWith, uidOwner
shared link expiration*, fileSource, fileTarget, id, itemSource, itemTarget, itemType, permissions, shareType, token, uidOwner
shared user fileSource, fileTarget, id, itemSource, itemTarget, itemType, permissions, shareType, shareWith, uidOwner
unshared email deletedShares, fileSource, id, itemSource, itemType, shareType, uidOwner
unshared group deletedShares*, fileSource, fileTarget, id, itemSource, itemTarget*, itemType, itemparent*, shareType, shareWith,

uidOwner, unsharedItems*
unshared link deletedShares, fileSource, fileTarget, id, itemParent*, itemSource, itemType, shareType, uidOwner
unshared user deletedShares*, fileSource, fileTarget, id, itemSource, itemTarget*, itemType, shareType, shareWith, uidOwner,

unsharedItems*

Users

user added to group group, user
user assign user
user created user
user data viewed -
user deleted user
user disabled user
user removed from group group, user

0

10

20

30

40

100 101 102 103 104 105 106 107

Event count

N
um

be
r

of
 u

ni
qu

e
ev

en
t t

yp
es

role
administration
consulting
external
management
sales
technical
unknown

Fig. 2: Users behavior profiles displayed by their number of
unique events (vertical axis), total number of events (horizontal
axis), role (symbol), and number of active days (yellow: 1,
orange: 2-4, red: 5-49, dark red: 50-499, black: >500).

account for a much higher number of events and make use of
more event types. Not surprisingly, the latter group of users is
active for a longer amount of time while users who carry out
less events usually do so within few days, possibly a single
day. Overall, out of the 5389 total users, 3907 are only active
on a single day, 768 on 2-4 days, 539 on 5-49 days, 128 on
50-499 days, and 47 on 500 or more days, where counted days
of user activity are not necessarily consecutive.

As the hBOX is a collaborative tool, it is reasonable to
analyze interactions and collective behavior patterns in addi-
tion to individual user profiles. We therefore use the attributes
“user” (e.g., in group Users) and “uidOwner” (e.g., in group
Sharing) to form connections between related users. Figure
3 shows the resulting graph, where each node represents one
user and an edge between two users indicates that there exists
an event generated by one of the users that references the other
user. Note that we omit edges that directly connect users to
themselves and also exclude pairs of users that only connect to
each other. As visible in the figure, several clusters of varying
sizes emerge where all users within a cluster share connections
to the same user, which we refer to as hub. To emphasize these
clusters we plot hubs with more than 100 adjacent nodes with a
specific color and apply the color of the largest connected hub
on all other nodes. While the majority of the nodes is located
in one of these clusters, the nodes in the center of the graph
have a much higher number of adjacent nodes, indicating that
these users interact with many distinct users.

B. Dynamic Analysis

The previous section presented static properties of the
data set without considering timestamps of events. However,
user behavior, in particular when observed over a long time,
constitutes a highly dynamic process that usually exhibits
long-term shifts as well as seasonal patterns that need to
be taken into account when applying anomaly detection. To
obtain an overview of the stability of event occurrences, we
first generate a count matrix for all event type occurrences in
each month. Figure 4 visualizes the resulting time-series of the
14 most common event types. The plot shows that even though
different event types appear with frequencies across several

Fig. 3: User interaction graph showing groups of related users.

orders of magnitude, there is indeed some continuity over time,
for example, the “login attempt” event type occurs between
104 and 105 times in almost all months, except for March
2021 when it suddenly peaks to 107. Another interesting
observation is that some event types correlate with other, for
example, events “login attempt” and “login successful” have
a strong correlation due to the fact that most login attempts
are successful. Moreover, the appearances of some event types
depend on changes of the system logging configuration. For
example, “login failed” events are not generated until the
beginning of 2019 and suddenly stop to appear after mid 2021.

To identify reasons for aforementioned variabilities of event
occurrences, we investigate event counts independent of their
type with higher granularity. Figure 5a shows event counts in
intervals of 2 minutes for every day in the data set. Several
interesting patterns appear in this plot. First, vertical lines of
varying width depict phases of high activity that usually takes
place for some hours, days, or even weeks. Many of these
events are generated by client synchronization tools that query
the system in short time intervals (e.g., multiple login attempts
occur in each second). Second, horizontal lines originating
from scheduled programs generate events at specific times of
a day (e.g., every full hour) over several weeks or months.
This includes tools for version management, file scanning, and
recycling. Third, normal user activities that are generally more
frequent during daytime (i.e., 7:00-17:00) form a region with
increased event density in the vertical center of the plot.

The overall system utilization is obviously affected by a
large number of independently acting users and thus the
aggregated system behavior frequently undergoes changes.
However, it turns out that the behavior of many users is also
highly unstable, consisting of a mix of regular and irregu-
lar patterns, and apparently changing their behavior profiles
several times. We arbitrarily picked a user representing this
tendency and visualized their activities in Fig. 5b, where each
point represents one event generated by that user. The artifacts
are similar to the aggregated plot: the figure clearly shows
horizontal lines around January 2018, vertical lines starting

2017 2018 2019 2020 2021 2022

Aug Oct Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep

01

10

100

1000

10000

1e+05

1e+06

1e+07

E
ve

nt
 c

ou
nt

type

admin_settings_changed

deleted_from_trashbin

file_accessed

file_created

file_deleted

file_renamed

file_updated

file_written

login_attempt

login_failed

login_successful

public_share_accessed

user_data_viewed

version_deleted

total

Fig. 4: Event occurrence counts per month for 14 most common event types and the sum of all event types (dashed line).

00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
10h
11h
12h
13h
14h
15h
16h
17h
18h
19h
20h
21h
22h
23h

Jan'18 Jul'18 Jan'19 Jul'19 Jan'20 Jul'20 Jan'21 Jul'21 Jan'22 Jul'22
Day

T
im

e
of

 d
ay

10 100 1000
Event count

(a) All users.

00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
10h
11h
12h
13h
14h
15h
16h
17h
18h
19h
20h
21h
22h
23h

Jan'18 Jul'18 Jan'19 Jul'19 Jan'20 Jul'20 Jan'21 Jul'21 Jan'22 Jul'22
Day

T
im

e
of

 d
ay

(b) User “spectacular-copper-cheetah-postman”.

Fig. 5: Daily event occurrences plotted over time.

from July 2021, and normal user behavior during day times.
These instabilities of normal user behavior have a strong

impact on anomaly detection applied on the data set. The
reason for this is that anomaly detection systems are usually
designed to recognize such rapid changes of user behavior
and thus many of the reported anomalies have to be regarded
as false positives. To further investigate the extent of this
problem, we measure how long it takes until a user executes
a new event type that they have not carried out before. The
bottom part of Fig. 6 shows these anomalies as red circles,
where the vertical axis lists all users sorted by their total

active duration (i.e., the duration between the first and last
event recorded for that user), the horizontal axis shows the
days after which the anomalies were detected, and the blue
triangles indicate the last event recorded by the user. Note
that we only display users that are active for at least five days.
As expected, most anomalies accumulate on the left side of
the plot; however, the plot also reveals that users execute a
significant number of new events even after several months of
activity. In particular, we observe anomalies from 567 out of
1206 users after 10 days (47%), 360 out of 846 users after 100
days (42.6%), 162 out of 445 users after 500 days (36.4%),
and 45 out of 196 users after 1000 days (23%).

The top plot of Fig. 6 shows the total number of anomalies
per day aggregated over all users. Corresponding to the bottom
plot, the number of anomalies is enormous with around 10,000
anomalies on the first day, but rapidly decreases to around
100 anomalies on the second day, and stabilizes at less than
10 anomalies per day after 50 days. We emphasize that these
numbers depict an ideal situation where all users start at the
same point in time, however, as new users appear arbitrar-
ily these anomalies spread out evenly through the data set.
Moreover, the depicted scenario neglects that a conventional
anomaly detection system trained only for a limited amount
of time (say, 100 days) would report repeated occurrences
of event types not seen in the training phase multiple times
and thus significantly increase the total number of anomalies.
These findings align with previous studies that indicate limited
applicability of conventional anomaly detection approaches
on user-generated log data [23]. We therefore conclude that
anomaly detection with fixed training sizes is not feasible for
this data and that dynamic learning techniques with continuous
re-training are required to compensate for long-term changes
of user behavior patterns. We present and evaluate such an
anomaly detection technique in the following section.

V. ILLUSTRATIVE SCENARIO

This section presents an illustrative scenario for anomaly
detection. We first outline how we inject anomalies in the data
set and then describe and evaluate our detection approach.

100

101

102

103

104

0 500 1000 1500
Days since first appearance of user

A
no

m
al

ie
s

pe
r

da
y

U
se

r

Fig. 6: Anomaly detection based on event types. Bottom:
Anomalies per user. Top: Aggregated anomaly counts.

A. Attack Injection

We showed in the previous section that the user behavior
patterns derived from the data set are subject to dynamic
changes. Given that the data records real user behavior it is
difficult to determine the exact reasons behind these artifacts
and thus no comprehensive ground truth can be established
for the data set. As a solution, we propose to purposefully
alter the behavior patterns of some users at specific points
in time and to use that information as the ground truth for
evaluation of anomaly detection systems. Note that this implies
that detection of normally occurring system or user behavior
changes counts as false positives even though they may be
valid changes from a purely data-driven perspective.

Our idea is to focus on an attack where one user account
is hijacked by another, i.e., starting from one point in time
the behavior patterns of a certain user does not reflect their
previous behavior anymore, but instead entails new patterns
that belong to some other user. We simulate this situation
by randomly selecting two users u1, u2 and interchanging
their respective identifiers (attribute “uid”) when they fulfill
the following requirements (Table IV summarizes all used
variables). First, both users must be active for a certain
number of days before switching their identifiers at time ts
so that an anomaly detection system is capable of learning
their respective behavior profiles. We therefore require that
|{ti ∈ d(u) : ti < ts}| > dmin for both u1 and u2, where d(u)
is the set of days where user u produces at least one event.
Second, both users must be active for at least one day after
switching their identifiers to ensure that an anomaly detection
system has sufficient time to recognize the change. Third, we
only consider users that produce at least cmin total events with
at least amin unique event types, i.e., we require that both u1
and u2 fulfill c(u) > cmin and |a(u)| > amin, where c(u) is
the event count and a(u) is the set of all event types executed
by user u. Fourth, the behavior patterns of the two users
should not be too different so that detection becomes trivial,
but also not too similar so that switching their identifiers has
no apparent effect. We address this problem by proposing a
similarity metric in Eq. 1 that yields high scores for users that
exhibit similar system utilization rates and system activities.
The first part of the equation computes the ratio between the
average number of events produced per day and the second

TABLE IV: Symbol definitions

Symbol Definition
t Specific day (time stamp).
Ut Set of users known at t.
u Specific user, u ∈ U .
a(u) Event types carried out by u.
α Specific event type, α ∈ a(u).
amin Min. req. unique event types.
c(u) Event counts of user u.
cα,t(u) Counts of α at day t for u.
cmin Min. req. total events.

Symbol Definition
d(u) Days where u is active.
dmin Min. req. active days.
ts Time where users are switched.
ω1, ω2 Weights for sim. computation.
smin Min. req. similarity.
smax Max. req. similarity.
r Min. number of re-training days.
q Max. size of trained model.
θ Min. sim. detection threshold.

0.00
0.25
0.50
0.75
1.00

Similarity

Fig. 7: Heatmap visualizing similarities of user pairs.

part computes the ratio of common event types carried out
by both users. Furthermore, we use parameters ω1, ω2 with
ω1 + ω2 = 1 to weight the terms.

sim(u1, u2) = ω1 ·
min

(
c(u1)
|d(u1)|

, c(u2)
|d(u2)|

)
max

(
c(u1)
|d(u1)|

, c(u2)
|d(u2)|

) + ω2 ·
|a(u1) ∩ a(u2)|
|a(u1) ∪ a(u2)|

(1)
Figure 7 visualizes the similarity scores between pairs of users
in a heatmap using ω1 = 0.3, and ω2 = 0.7. Note that for this
plot we only select users that are active for at least 25 days
but do not require that their activity periods overlap so that
it is possible to switch their identifiers. The plot shows that
our similarity metric allows to identify groups of users from
which two users can be picked randomly so that requirement
smin < sim(u1, u2) < smax is fulfilled.

B. Dynamic Learning

As outlined in Sect. IV-B, the data set presented in this
paper is unstable as it involves dynamically changing user
behavior patterns. Accordingly, it is not simply possible to
obtain training and test files that are commonly available when
evaluating anomaly detection systems based on user and entity
behavior analysis, e.g., by separating the data set at a specific
point in time or by selecting a subset of users [3]. Instead,
the nature of this data set (and most real-world data sets)
necessitates the application of dynamic learning mechanisms
that enable incremental and continuous adaptation of trained
models to comply with newly observed patterns.

Our key observation from Sect. IV-B is that changes of
user behavior are usually not manifesting themselves as slow
processes that gradually affect the prevalent patterns; they
occur rapidly and subsequently remain stable for some time.
Our goal is therefore to detect these change points as anoma-
lies and immediately start re-training by adapting the already

FP

TN TN

Retraining

Retraining TP

Retraining

FN TN FP Retraining

TNRetraining

Retraining

Switch

u1

u2
1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 8: Detected events and subsequent re-training phases.

trained models until they are sufficiently approximating the
new behavior patterns. Thereby, we define only the minimum
duration of the re-training phase r but allow the detector
to dynamically extend that duration based on how many
anomalies are detected. After the model stabilizes and no more
anomalies occur for r days, re-training is stopped and the
anomaly detection system switches back to normal operation.

For simplicity, we consider a day where one specific user
generated at least one event as the unit of detection in the
following, i.e., the whole day is regarded either as anomalous
or benign rather than its individual events. Figure 8 shows
exemplary timelines for users u1 (top) and u2 (bottom), where
each tick marks the start of a new day, blue circles indicate
that at least one event was generated on the respective day,
red crosses indicate that one or more of these events were
detected as anomalous, and the orange triangle indicates the
attack injection time. In the figure, day 1 of u1 is detected
as anomalous and therefore triggers the re-training phase for
days 2 and 3. However, day 2 is also considered as anomalous
and therefore re-training is extended to day 4. As no more
anomalies occur on day 3 and 4, the re-training phase ends.
Note that we only count days with user activity, e.g., the re-
training phase triggered by the anomaly on day 8 takes three
days as there are no events produced by u1 on day 10.

C. Anomaly Detection

To determine whether the daily activities of a user are
considered anomalous or not, we propose a metric based
on the frequencies and diversities of involved event types in
accordance with our user similarity metric from Sect. V-A.
The main idea is to compare each new observation of daily
generated events with a set of previous observations that act as
a baseline of normal behavior, and classify the new observation
as anomalous if it is not sufficiently similar to any of the
previous ones. This allows incremental processing of events
as new observations are immediately added to the model after
classification. To enable comparison of generated events, we
first compute daily count vectors comprising elements cα,t(u)
for each user u, where α is the respective event type and t
is the observed day. The trained model thus consists of a list
of count vectors from previous observations. To phase out old
count vectors that may not be representative for the current
user behavior anymore, we design the list as a queue of length
q where new or matching vectors are always moved to the
beginning of the queue. We measure the difference between
count vectors of any new day and all count vectors available
in the model for that user with the l1 norm since it is more
suitable for high-dimensional data than higher-order norms

TABLE V: Sample computation of the anomaly score

Event types Model Test t1, t3 t2, t3
α cα,t1 cα,t2 cα,t3 Diff. Max. Diff. Max.
file accessed 2 - - 2 2 0 0
file created 1 - 2 1 2 2 2
file updated 5 15 14 9 14 1 15
file written 6 15 16 10 16 1 16
login attempt - 4 4 4 4 0 4
login successful - 4 4 4 4 0 4

Sum - - - 30 42 4 41
Score - - - 0.71 0.1

[24]. We also normalize the l1 norm by dividing by the sum
of the maximum of each vector element according to Eq. 2.

scoretj (u) =
j−1

min
i=j−q

{ ∑
α∈a(u)

∣∣cα,tj (u)− cα,ti(u)∣∣∑
α∈a(u) max

(
cα,tj (u), cα,ti(u)

)} (2)

Daily event occurrences are considered anomalous when
their resulting anomaly scores exceed a pre-defined detection
threshold, i.e., scoretj (u) > θ. We provide an exemplary
computation of the anomaly score in Table V, which shows
three daily count vectors with six distinct event types taken
from user “ethical-lavender-clownfish-stagemover”, where t1
and t2 are assumed to be part of the baseline and t3 is a new
observation. We state the differences and maxima of elements
in the count vectors of t1 and t2, which correspond to the
numerator and denominator of Eq. 2 respectively. The row
containing the sums shows that the vectors differ in 30 out
of 42 possible positions, thus yielding an anomaly score of
30/42 = 0.71. Considering only these two count vectors and
assuming a threshold of θ = 0.5, t3 would be reported as
an anomaly; however, since t2, t3 yields a score of only 0.1,
the new observation is similar enough to one of the count
vectors already contained in the baseline model to be regarded
as normal behavior. As visible from this example, an intuitive
aspect of this detection method is that it treats event types
that are only present in one of the two compared vectors as
zero, which also has the benefit that the set of available event
types does not need to be known beforehand and that count
vectors of the model do not require updating. Moreover, as the
method relies on similarity-based clustering, it is not necessary
to assume that event counts follow any statistical distributions.

We recognize that event types that usually occur with higher
frequencies have stronger influence on the anomaly score and
therefore propose two variants that modify the count vectors.
The first variant stated in Eq. 3 normalizes the vectors so that
the measure relies on relative rather than absolute frequencies.

cnormα,t (u) =
cα,t(u)∑

α′∈a(u) cα′,t(u)
(3)

The second variant assumes that event types used by more
users are less relevant for detection, and vice versa. The metric
thus assigns weighs to all event types similar to the well-
known tf-idf statistic [25]. In particular, Eq. 4 multiplies the
elements of the count vectors with the fraction of all users
Ut observed until time t over the number of users that have
already used that specific event type. Note that we add 1 in the

numerator to ensure that every event type receives a non-zero
weight even if it is generated by all users.

cidfα,t(u) = cα,t(u) · log
(

1 + |Ut|
|{u′ ∈ Ut : α ∈ a(u′)}|

)
(4)

D. Evaluation

To evaluate our illustrative scenario, we first generate a
data set with injected attacks as described in Sect. V-A. In
particular, we randomly select 10 pairs of users that satisfy
our selection criteria with parameters dmin = 25, cmin = 100,
amin = 4, smin = 0.1, smax = 0.6, ω1 = 0.3, and ω2 = 0.7.
We then apply the anomaly detection approach from Sect. V-C
using the dynamic learning strategy from Sect. V-B. We count
the first day with user activity after switching each user pair as
true positive (TP) if the day is detected as an anomaly, and
as false negative (FN) otherwise. We count all other days
with user activity as false positives (FP) if they are detected
as anomalous, and as true negatives (TN) otherwise. Figure
8 provides examples for each of these classes. Note that this
evaluation setup only considers days where models are not re-
trained, which means that all days that are correctly detected
as anomalous but fall in re-training phases due to some false
positives occurring before are not counted as true positives.
To avoid this issue, we also count these days separately in
an adjusted true positive score (TPadj) that keeps track of
all correctly detected days independent of training phases. We
then compute TPR = TP

TP+FN , TPRadj =
TPadj

TPadj+FNadj
,

and FPR = FP
FP+TN . Moreover, we count the number of

days spent for re-training in relation to all days with user
activity, because a high fraction of re-training days (R =
number of training days

total number of days) means that comparatively few days are used
for detection, which limits practical applicability.

Figures 9a-9c visualize these metrics for various parameter
settings. Figure 9a shows how the detection threshold as well
as queue size q influence the results. For lower detection
thresholds, we obtain a higher TPRadj since more days are
detected as anomalous; however, TPR declines for θ ≤ 0.25,
because the higher amount of FP cause that more correctly
detected days appear during re-training. Furthermore, lower
queue sizes improve detection of anomalous days but also
increase FPR and R as more days are incorrectly detected.
Based on these results we select q = 30 as well as θ = 0.6 as
a trade-off between a high true positive rate (TPR = 65%),
low false positive rate (FPR = 4.6% or less than 2 false
alarms per day on average), and few days used for re-training
(R = 6.8%). Figure 9b shows that a higher number of days
used to re-train the models reduces false positives but at the
same time significantly increases R. The plot also shows that
detection rates are largely unaffected for θ ≥ 0.6. We therefore
select r = 1 as the best setting for our experiments. Finally,
Fig. 9c shows the influences of count vector variations. As
visible in the figure, the idf-based variation yields higher TPR
for θ > 0.7 than the default case, but also has the disadvantage
of higher FPR and R. The main reason why this variant is
unable to outperform the default variant is that anomalies often
manifest in commonly used event types, which receive lower

weights. On the other hand, the normalized variant yields low
FPR and R but cannot compete with the other variants in
terms of detection rates. Overall, the default variant appears
as the best selection for this data set.

VI. DISCUSSION

The data set presented in this paper shows how diverse
and erratic user behavior can be in real cloud computing
environments. Not only do users utilize the system differently
in terms of used functions and access frequencies; there
are many dynamic changes that are often neglected when
evaluating anomaly-based systems, including evolution of the
user community (e.g., new users appear and others stop using
the system), changes of user behavior patterns (e.g., as conse-
quences of users employing different tools), and technological
changes of system infrastructures and configurations (e.g., new
or modified log event types). It is particularly interesting to
see that user behavior does not just involve direct interactions
between the human and the system, but that manifestations
of user activity blend with artifacts generated by automatic
scripts and tools used to access the system.

Despite frequent changes of the overall system behavior,
there are also remarkable regularities in the data, such as
correlations between event types, communities that users inter-
act with, and periods where users generate events with stable
frequencies. The latter makes the data set especially interesting
for adaptive learning mechanisms that aim to detect points
in time where system behavior changes while immediately
adapting to the new baselines.

Our proposed strategies for measuring similarities between
users as well as detecting anomalies in the data set only
makes use of event type frequencies; this decision is motivated
by our observation that most long-term users utilize many
distinct event types (cf. Sect. IV-A). It may be beneficial
to extend our comparisons to other attributes in the data,
including geolocation, accessed paths, related users, and times
of day when events are generated. Thereby, it is important to
adequately adapt the attack injection method to also modify
attributes in addition to the user identifier to avoid that
anomaly detection becomes too trivial. For example, utilizing
attribute “loginName” of event type “login attempt” likely
makes it too easy to detect changed users as the names they
use for logging in are rather unique. Other than that, it is also
possible to rely on different methods for attack simulation, for
example, replacing one user with another (i.e., deleting one of
the users after switching), injecting new or modified events
for some users, or inserting an artificially generated user. In
that regard it could also be interesting to pursue classification
of users rather than detection of single anomalous days. We
leave these tasks for future work.

VII. CONCLUSION

We present a real cloud computing log data set for anomaly
detection. Thereby, anonymization of sensitive data is carried
out in such a way that no information is lost when applying
user and entity behavior analysis. The log events comprise

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Detection threshold

M
et

ric
 v

al
ue

Metric
TPR
TPR adj.
FPR
R

(a) Influence of model size (solid: q = 30,
dashed: q = 15, dotted: q = 5).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Detection threshold

M
et

ric
 v

al
ue

Metric
TPR
TPR adj.
FPR
R

(b) Influence of re-train duration (solid: r =
1, dashed: r = 2, dotted: r = 3).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Detection threshold

M
et

ric
 v

al
ue

Metric
TPR
TPR adj.
FPR
R

(c) Influence of mode (solid: default, dashed:
idf, dotted: normalized).

Fig. 9: Evaluation results under varying conditions.

information on the user, type of action (e.g., a user logging in
or accessing a file), event timestamp, and context (e.g., system
paths or geolocations). Our analysis shows that users exhibit
distinct behavior patterns, for example, based on average ac-
tivity rates, system utilization, and communities. Moreover, we
highlight the dynamic nature of the log data set, in particular,
the unstable behavior patterns caused by long-term changes
of system utilization. Based on these insights we design
an adaptive anomaly detection technique that is capable of
handling unstable data through repeated re-training of learned
models. To evaluate our approach, we also outline a strategy
for injecting attack consequences in the data, in particular, we
simulate account hijacking by switching identifiers of similar
users. For future work, we plan to inject also other types of
anomalies in the data.

ACKNOWLEDGMENT

This work was partly funded by the FFG project DECEPT
(873980). The authors thank Walter Huemer, Oskar Kruschitz,
Kevin Truckenthanner, and Christian Aigner from Huemer
Group for supporting the collection of the data set.

REFERENCES

[1] G. Bassett, C. D. Hylender, P. Langlois, A. Pinto, and S. Widup, “Verizon
data breach investigations report,” pp. 1–108, 2022.

[2] A. Singh and K. Chatterjee, “Cloud security issues and challenges: A
survey,” Journal of Network and Computer Applications, vol. 79, pp.
88–115, 2017.

[3] A. G Martı́n, A. Fernández-Isabel, I. Martı́n de Diego, and M. Beltrán,
“A survey for user behavior analysis based on machine learning tech-
niques: current models and applications,” Applied Intelligence, vol. 51,
no. 8, pp. 6029–6055, 2021.

[4] M. Shashanka, M.-Y. Shen, and J. Wang, “User and entity behavior
analytics for enterprise security,” in International Conference on Big
Data. IEEE, 2016, pp. 1867–1874.

[5] Y. Gao, Y. Ma, and D. Li, “Anomaly detection of malicious users’
behaviors for web applications based on web logs,” in International
Conference on Communication Technology. IEEE, 2017, pp. 1352–
1355.

[6] F. Skopik, M. Wurzenberger, and M. Landauer, Smart Log Data Ana-
lytics. Springer, 2021.

[7] M. Landauer, F. Skopik, M. Wurzenberger, W. Hotwagner, and
A. Rauber, “Have it your way: generating customized log datasets with
a model-driven simulation testbed,” IEEE Transactions on Reliability,
vol. 70, no. 1, pp. 402–415, 2020.

[8] M. Landauer, F. Skopik, M. Frank, W. Hotwagner, M. Wurzenberger,
and A. Rauber, “Maintainable log datasets for evaluation of intrusion
detection systems,” arXiv preprint arXiv:2203.08580, 2022.

[9] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 807–817.

[10] R. Uetz, C. Hemminghaus, L. Hackländer, P. Schlipper, and M. Henze,
“Reproducible and adaptable log data generation for sound cybersecurity
experiments,” in Annual Computer Security Applications Conference,
2021, pp. 690–705.

[11] H. A. Kholidy and F. Baiardi, “CIDD: A cloud intrusion detection
dataset for cloud computing and masquerade attacks,” in International
Conference on Information Technology-New Generations. IEEE, 2012,
pp. 397–402.

[12] G. O. Ganfure, C.-F. Wu, Y.-H. Chang, and W.-K. Shih, “Deepguard:
Deep generative user-behavior analytics for ransomware detection,”
in International Conference on Intelligence and Security Informatics.
IEEE, 2020, pp. 1–6.

[13] K. Singh, P. Singh, and K. Kumar, “User behavior analytics-based
classification of application layer http-get flood attacks,” Journal of
Network and Computer Applications, vol. 112, pp. 97–114, 2018.

[14] G. Creech and J. Hu, “Generation of a new ids test dataset: Time to
retire the KDD collection,” in Wireless Communications and Networking
Conference. IEEE, 2013, pp. 4487–4492.

[15] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “De-
veloping realistic distributed denial of service (ddos) attack dataset
and taxonomy,” in International Carnahan Conference on Security
Technology. IEEE, 2019, pp. 1–8.

[16] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
2018.

[17] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in ACM Sympo-
sium on Operating Systems Principles, 2009, pp. 117–132.

[18] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in International conference on dependable systems and
networks. IEEE, 2007, pp. 575–584.

[19] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in ACM confer-
ence on computer and communications security, 2017, pp. 1285–1298.

[20] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in International
Conference on Software Engineering Companion, 2016, pp. 102–111.

[21] S. He, J. Zhu, P. He, and M. R. Lyu, “Loghub: A large collection of
system log datasets towards automated log analytics,” arXiv preprint
arXiv:2008.06448, 2020.

[22] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “Towards
a reliable intrusion detection benchmark dataset,” Software Networking,
vol. 2018, no. 1, pp. 177–200, 2018.

[23] F. Skopik, M. Wurzenberger, G. Höld, M. Landauer, and W. Kuhn,
“Behavior-based anomaly detection in log data of physical access control
systems,” IEEE Transactions on Dependable and Secure Computing,
2022.

[24] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising
behavior of distance metrics in high dimensional space,” in International
conference on database theory. Springer, 2001, pp. 420–434.

[25] C. D. Manning, Introduction to information retrieval. Syngress
Publishing, 2008.

