
ANALYZING LOG DATA

This work is licensed under a Creative Commons
Attribution 4.0 License. For more information,

see https://creativecommons.org/licenses/by/4.0/deed.ast.80 May/June 2022 Copublished by the IEEE Computer and Reliability Societies

Online Log Data Analysis With
Efficient Machine Learning: A Review
Florian Skopik, Max Landauer, and Markus Wurzenberger | Austrian Institute of Technology

Logs are incrementally produced textual data that reflect events and their impact on technical systems.
Their efficient analysis is key for operational cybersecurity. We investigate approaches beyond applying
simple regular expressions and provide insights into novel machine learning mechanisms for parsing and
analyzing log data for online anomaly detection.

L og files capture information about almost all events
that take place in a system. Historic logs enable foren-

sic analysis of past events and give system administrators
a means to trace the roots of observed problems. More-
over, logs may help to recover to a nonfaulty state, reset
incorrect transactions, restore data, and replicate scenar-
ios that lead to erroneous states. Storing logs is typically
inexpensive since the files can be effectively compressed.
However, a major issue with forensic log analysis is that
problems are detected only in hindsight; thus, modern
approaches in cybersecurity shift from purely forensic to
proactive analysis.1 This enables timely responses and, in
turn, reduces costs caused by incidents and cyberattacks.

When considering large enterprise systems, it is not
uncommon that the number of daily produced log lines is
in the millions. Clearly, this makes manual analysis impos-
sible, and it thus stands to reason to employ machine
learning algorithms that automatically process the lines
and recognize interesting patterns that are then pre-
sented to system operators in condensed form. Liter-
ally hundreds of different machine learning approaches
have been proposed during the past decades. However,
when it comes to processing log data online (i.e., when
the information is generated), it becomes quite tricky to

pick (and possibly adapt) them to the specific require-
ments of this application area. The reasons for that are
manifold, as in the following:

■ Single log lines cannot easily be categorized as good
or bad, and their classification often relies on the sur-
rounding context.

■ Most machine learning approaches were designed for
numerical information, e.g., sensor readings, not com-
plex text-based data.

■ Log data possess unknown grammar, which means
their style, format, and meaning is usually not fully
documented and understood by those analyzing them.

■ For intrusion detection, near real-time use is preferred.
This means methods must be able to process data
online, i.e., when the information is produced. As a con-
sequence, approaches need to work in a “single-pass”
manner and process data in streams in an efficient way.

■ Since a monitored environment may rapidly change,
the usually separated training and detection phases of
machine learning approaches may overlap and disturb
one another. It is not acceptable that a single change
triggers a need to learn a complex model from scratch;
rather, models should be adaptable.

Bearing these challenges in mind, in this article,
we present the concept of a log data analysis pipeline,

Digital Object Identifier 10.1109/MSEC.2021.3113275
Date of current version: 7 October 2021

www.computer.org/security 81

map existing approaches to the functional blocks of
this pipeline, highlight specific challenges, and discuss
adaptations and recommendations to improve applica-
bility for online log data analysis. The open source soft-
ware AMiner (https://github.com/ait-aecid/) implements
these concepts. We take a closer look into challenges
of log data analysis for security purposes, examine rel-
evant approaches, and provide insights into their appli-
cation through some practical examples. The main goal
of this article is to make important work accessible to
a large audience.

Log Data Analysis for Security Purposes
Blocklisting approaches can be effective in several use
cases. For instance, detecting access attempts out-
side business hours is a standard case that every well-
configured intrusion detection system can handle. Never-
theless, using blocklisting only, security personnel must
think upfront of all potential attack cases and how they
could manifest in a network. This is not only a tedious
task but also extremely error prone. In contrast, the
application of anomaly-based approaches that discover
deviations from a defined system’s state seems prom-
ising: one needs to describe the “normal and desired
system behavior” (this means creating an allow list of
what is known to be good), and everything else is
classified as potentially hostile. The effort is com-
paratively lower and demonstrates the advantages of
an anomaly-based technique.2 However, these advan-
tages come with a price. While signature-based meth-
ods tend to generate false negatives, i.e., undetected
attacks, anomaly-based approaches are usually prone
to high false positive rates. Complex behavior mod-
els and potentially error-prone training phases are just
some of the drawbacks to consider.

To keep false positive rates at acceptable levels, it
is important to carefully design an anomaly detection
procedure. We identify four major building blocks that
are necessary to establish a log processing pipeline for
anomaly detection. Figure 1 provides an overview. The
first step involves clustering log data, with the purpose

of generating groups of similar events. Clustering is
fully unsupervised; i.e., it is not necessary to manu-
ally code any knowledge about the log structures and
assign labels to single lines. Instead, approaches based
on string similarity and n-gram analysis assign lines to
groups of similar events. There are two main outcomes
of this step. First, outliers are identified as lines that end
up in small clusters. These lines are the most basic form
of anomalies, as they indicate rare events. Second, the
resulting groups of lines are suitable to be transformed
into templates, i.e., patterns that are descriptive for all
lines in a specific group. This task is addressed in the
second step of the pipeline.

Generating such cluster templates from groups with
similar events is a nontrivial task since artifacts in the
logs are diverse. For example, events with different
numbers and orders of tokens and lengths of these
tokens may appear in the same cluster. Sequence align-
ment is a commonly used method for template genera-
tion, but it is mostly applied to pairs of strings rather
than groups. It is therefore necessary to continuously
merge such templates to figure out which characters in
the logs are static or variable. Eventually, the generated
templates are utilized by a parser generation module in
the third step. Log parsers leverage tree-like structures
rather than lists of patterns, such as regular expressions,
to ensure that parsing takes place with the highest pos-
sible efficiency. Accordingly, log templates are split into
tokens by a set of delimiters and then transformed into a
single parsing tree. Thereby, tokens that are different in
most lines are replaced by variables, while static tokens
differentiate event types. Parsers are essential for all sub-
sequent analyses because they map all tokens to seman-
tically meaningful attributes.

Parsed log data are analyzed by anomaly detection
techniques as described in the fourth step. Available
detection methods are diverse and usually address spe-
cific characteristics of artifacts that are commonly sub-
ject to change when malicious behavior manifests in the
logs. For example, time series analysis detects events
that occur with higher or lower frequency than usual,

Figure 1. The log data analysis pipeline consisting of four major building blocks that are sequentially executed.

Step 1 Step 2 Step 3 Step 4

Incremental Event Clustering Cluster Template Generation Parser Generation Anomaly Detection

How?

Why?

How? How? How?
• Online Clustering
• Dynamic Cluster Maps

• Sequence Alignment
• Entropy Detection

• Linear or Hierarchical
 Structural Analysis

• Detection of Behavior
 Deviations

Why? Why?

Why?
• Outlier Detection
• Fast Filtering

• Log Classification
• Log Reduction
• Event Counting

• Model Building
• Time Series Analysis
• Correlation Analysis
• Sequence Analysis

• Log Classification
• Feature Selection
• Log Filtering

82 IEEE Security & Privacy May/June 2022

ANALYZING LOG DATA

correlation analysis detects events that typically occur
together and fail to do so, and sequence analysis detects
workflow changes; i.e., known events appear in a new
order. All these methods have in common that they are
based on a model of normal behavior that is learned on
training data and continuously adapted through time,
where anomalies may be detected in a semisupervised
manner during learning and in a separate detection
phase. Deploying, configuring, and effectively operat-
ing an anomaly detection system that ingests log data
is a complicated task. We employ the setting described
in the following as a guiding scenario for the stepwise
introduction of our log data analysis solution.

Scenario
An internal web server hosts numerous services and
sensitive resources. Legitimate users may retrieve these
resources and modify them via web-based forms. Security
operators collect access logs, using client Internet Proto-
col (IP) addresses, user agent, requested resource name,
and request methods to build a system model, consisting
of expected event types and values employed as a baseline
for anomaly detection. The log data look as follows:

[…]

10.0.0.130 - - [04/Mar/2021:06:55:35] “GET/
projX/doc1 HTTP/1.1” 200 3844 “http://doc
.acme.com/projX/” “Mozilla/5.0”

10.0.0.139 - - [04/Mar/2021:06:55:45] “GET/
projX/doc2 HTTP/1.1” 200 2845 “http://doc
.acme.com/projX/” “Mozilla/5.0”

10.0.0.139 - - [04/Mar/2021:06:55:45] “GET/
projX/doc2p1 HTTP/1.1” 200 849 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.121 - - [04/Mar/2021:06:55:47] “GET/
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.1.0.137 - - [04/Mar/2021:06:55:48] “GET/
projY/xls7 HTTP/1.1” 200 3574 “http://
doc.acme.com/projY/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:54]
“POST/edit/doc2 HTTP/1.1” 200 3243
“http://doc.acme.com/projX/edit.php?
page=doc2” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:55] “GET/
projX/doc2 HTTP/1.1” 200 3243 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:55] “GET/
projX/doc2p1 HTTP/1.1” 200 849 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:56] “GET/
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:56:34]
“POST/edit/doc1 HTTP/1.1” 200 4341
“http://doc.acme.com/projX/edit.php?
page=doc1” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:56:36] “GET/
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

[…].

Looking into this rather simplified snippet, we can
already observe several properties feasible for model build-
ing. For instance, we see different client IPs accessing
 various types of web resources, although not all IPs access
the same ones. We can find similarities in paths (there
are project X and project Y), and we can see that only the
user 10.0.0.130 edits documents (using HTTP POST
requests), while the others mainly retrieve data (using
GET). We learn that all users employ the same user agent,
presumably the browser of the company’s software stan-
dard. Looking closer, we observe even certain sequences
per IP address. For instance, whenever there is a POST
request, the same client retrieves a changed document
again via a consecutive GET request. Furthermore, doc2
consists of two parts, which are always retrieved together;
assuming doc2 includes doc2p1, the browser automati-
cally fetches both in two consecutive requests. These are
all behavioral properties of using web-based systems that
can be observed and captured using machine learning.

Step 1: Incremental Character-Based
Event Clustering

Purpose
Clustering is an efficient method for grouping similar
events and recognizing rare ones. Thus, it 1) supports
reducing the number of events when analyzing large
data sets, 2) enables outlier detection, and 3) facilitates
time series analysis when observing cluster properties
through time, e.g., using evolutions to correlate clusters
in different time windows.

Main Challenges
Many clustering approaches, such as distance-based
techniques, do not facilitate processing huge data sets

www.computer.org/security 83

because they store large distance matrices, consum-
ing significant amounts of memory. Additionally, many
clustering algorithms do not implement single-pass pro-
cedures, which makes them inapplicable for online log
analysis. Almost all existing log clustering solutions
implement token-based approaches and split log lines
only when a “space” occurs. Thus, they often do not yield
exact results, due to long tokens and because they recog-
nize highly similar but not equal tokens as entirely differ-
ent, such as terms and words with different encodings,
e.g., “can’t open file” versus “can\’t open file,” and simi-
lar uniform resource locators (URLs) and related paths,
e.g., “/home/alice/test.txt” versus “~/test.txt.” Then
again, character-based clustering suffers from highly
complex string metrics and therefore poor runtime.
Ultimately, log clustering requires high-performance,
incremental, character-based approaches that employ
smart filters to optimize runtime.

Relevant Works
The simple logfile clustering tool (SLCT)3 was one of
the first clustering algorithms specifically developed for
log data. It implements a density-based approach and
analyzes token frequencies. Iterative partitioning log
mining (IPLoM)4 applies iterative partitioning, where
groups of log lines are recursively split into subgroups
according to particular token positions. The type-casted
pattern and rule miner (CAPRI)5 uses a density-based
method for clustering and additionally applies sta-
tistical analysis to identify contextual relationships
among clusters. While SLCT and IPLoM do not imple-
ment single-pass procedures and are capable only of
processing static, i.e., fixed, data sets, CAPRI enables
stream-based analysis after a training phase, although
the system model is static. Additionally, none of the
tools implements a character-based method.

Our Recommended Approach
The mentioned challenges motivated our research on
character-based matching algorithms with runtime per-
formance comparable to token-based matching. Our
incremental clustering approach6 that implements den-
sity and character-based clustering applies a single-pass
clustering algorithm that processes data in streams
as well as line by line instead of batches. This enables
online anomaly detection; i.e., log lines are processed at
the time they are generated. Clustering approaches that
are applied for online anomaly detection have to fulfill
some essential requirements: 1) rapidly process data,
i.e., when they are generated; 2) promptly adopt the
cluster map (note that cluster map refers to the structure
of the clustering, i.e., the clusters and their identifiers,
which can be, for example, a template or representative
for each cluster); and 3) deal with large amounts of data.

Nevertheless, existing clustering approaches that
usually process all data at once, such as SLCT3 and
IPLoM,4 suffer from the following three major draw-
backs, which make them unsuitable for online anomaly
detection in log data:

1. Static cluster maps: Adapting/updating a cluster map
is time-consuming and computationally expensive.
If new data points occur that account for new clus-
ters, a whole cluster map has to be recalculated, as
with CAPRI.5

2. Expensive memory: Distance-based clustering
approaches are limited by available memory because
large distance matrices have to be stored: depend-
ing on the applied distance, this amounts to n2 or
n2/2 elements.

3. Computational expense: Log data are stored as text.
Therefore, string metrics are applied to calculate
the distance (similarity) between log lines. Their
computation is usually costly and slow.

We introduced a novel incremental clustering approach6
with the following features that sequentially processes
log data in streams for online anomaly detection:

 ■ The processing time of incremental clustering grows
linearly with the rate of input log lines, and there is
no required rearrangement of the cluster map. The
distances between log lines do not need to be stored.

 ■ Fast filters reduce the number of distance com-
putations that have to be carried out. A semisu-
pervised approach based on self-learning reduces
the configuration and maintenance effort for sys-
tem administrators.

 ■ The modularity of our approach facilitates the appli-
cation of different metrics to build the cluster map
and carry out anomaly detection.

 ■ Our method enables the detection of point anoma-
lies, i.e., single anomalous log lines, by outlier detec-
tion. Collective anomalies, i.e., anomalous numbers
of occurrences of normal log lines that represent a
change in system behavior, are detected through time
series analysis.

Example
Applying the introduced incremental clustering to the
previously outlined log data, the following clusters
emerge (assuming we blind out the time stamp from the
similarity calculations). Naturally, the two POST requests
are different from all the GET requests. Furthermore, the
two requests for doc2p1 are longer and look a bit differ-
ent than the others. Also, the request to/projY varies from
all the others in at least two spots, and the IP address dif-
fers, too, from all the others. In this simple example, the

84 IEEE Security & Privacy May/June 2022

ANALYZING LOG DATA

advantage of character-level templates already becomes
visible: we can account for similarities in paths and IP
addresses (e.g., distinguish IP address from different sub-
nets without the need to specify the same):

[Cluster 1]
10.0.0.130 - - [04/Mar/2021:06:55:35] “GET/
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.139 - - [04/Mar/2021:06:55:45] “GET/
projX/doc2 HTTP/1.1” 200 2845 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.121 - - [04/Mar/2021:06:55:47] “GET/
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:55] “GET/
projX/doc2 HTTP/1.1” 200 3243 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:56] “GET/
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:56:36] “GET/
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

[Cluster 2]
10.1.0.137 - - [04/Mar/2021:06:55:48] “GET/
projY/xls7 HTTP/1.1” 200 3574 “http://
doc.acme.com/projY/” “Mozilla/5.0”

[Cluster 3]
10.0.0.139 - - [04/Mar/2021:06:55:45] “GET/
projX/doc2p1 HTTP/1.1” 200 849 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:55] “GET/
projX/doc2p1 HTTP/1.1” 200 849 “http://
doc.acme.com/projX/” “Mozilla/5.0”

[Cluster 4]
10.0.0.130 - - [04/Mar/2021:06:55:54]
“POST/edit/doc2 HTTP/1.1” 200 3243
“http://doc.acme.com/projX/edit.php?
page=doc2” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:56:34]
“POST/edit/doc1 HTTP/1.1” 200 4341
“http://doc.acme.com/projX/edit.php?
page=doc1” “Mozilla/5.0”.

Step 2: Creating Cluster Templates

Purpose
Combining template generation with clustering offers
plenty of application possibilities: 1) templates can
be transformed into allow list rules, 2) templates pro-
vide an accurate description of the content of log lines
assigned to the same cluster, and 3) they facilitate parser
generation and log line classification, i.e., assigning
event types to log lines. The latter enables the applica-
tion of a large variety of anomaly detection algorithms
based on frequency and sequence analysis and thus, for
example, employ event count matrices.

Main Challenges
Since clustering and template generation are closely
related and clustering algorithms often provide some
sort of template, template generation inherits most of
its challenges from log line clustering. Again, there exist
token- and character-based approaches. While token-
based methods benefit from superior performance,
character-based templates are much more accurate and
handle similar but not equal tokens much better and
recognize variable parts more precisely. However, calcu-
lating character-based templates is complex and impos-
sible in the time frames required by online analysis.
Thus, robust heuristics are required that optimize per-
formance and effectively reduce runtime.

Relevant Works
The parallel log parser (POP)7 applies the longest
common subsequence (LCS) and implements an itera-
tive partitioning approach similar to IPLoM,4 where
templates are iteratively updated by identifying partic-
ular token positions in which the log lines differ. Log-
Hound8 applies the density-based approach of SLCT
as well as frequent item set mining to generate tem-
plates. LogSig9 implements some sort of LCS by find-
ing common word, i.e., token, pairs in similar log lines
to build representative templates. All the approaches
generate meaningful token-based templates but neglect
character-based algorithms.

Our Recommended Approach
We developed template generators (six that create
meaningful cluster descriptions), a prerequisite for the
feature selection used by machine learning solutions as
well as generating log parsers. Furthermore, templates
can be applied for log classification in general, such as
with LogSig,9 for log reduction through filtering and
event counting. A template is basically a string that con-
sists of substrings that occur in every log line of a cluster
in a similar location. Those substrings are referred to as
static parts of the log lines of the cluster. They are separated

www.computer.org/security 85

by wild cards, which represent variable parts of the log
lines, such as user names, IP addresses, and identifiers.
Furthermore, a template matches all log lines of the cor-
responding cluster.

The cornerstone of cluster template generation
on a character level is an efficient means to determine
the degree of similarity of two log lines, i.e., strings. A
sequence alignment is the result of an algorithm that
arranges two strings so that the smallest number of
operations (i.e., insertions, deletions, and replacements
of characters) is required to transform one string into
the other one; i.e., it assumes the highest possible simi-
larity. We solved the problem of generating a sequence
alignment for more than two log lines on a charac-
ter level,6 i.e., generating a multiline alignment.10 In
contrast to token-based template generators, such as
POP7 and LogHound,8 character-based approaches do
not rely on predefined building blocks in the form of
tokens. They recognize static and variable parts of log
lines independently from predefined delimiters.

There exist many efficient algorithms and string
metrics, such as the Levenshtein distance and the
Needleman–Wunsch algorithm, to achieve an align-
ment for two character sequences. Furthermore, there
are algorithms for genetic and biologic sequences to
calculate pairwise and multiline alignments; however,
they require knowledge about the evolution of nucle-
otides and are therefore not suitable for log data.10
Algorithms to align multiple sequences of any char-
acters with no genetic context are challenging. The
main reason is the difficulty of overcoming the high
computational complexity of this problem, which is
at least O(nm), where n is the length of the shortest
log line and m is the number of lines in a cluster. We
proposed a character-based cluster template generator
that incrementally processes the lines of a log line clus-
ter and reduces the computational complexity O(nm)
to O(mn2). The algorithm processes log lines sequen-
tially and thus follows an incremental approach, which
must handle each line only once. The resulting tem-
plate has a high similarity to the optimal template on
preclustered data.6

Example
Based on the four clusters created previously, our tem-
plate generation approach would come up with the fol-
lowing four templates. Notice that we use only a very
limited number of log lines to demonstrate the tech-
nique. In a typical setting, we would record access logs
across several days, if not weeks, and create the tem-
plates from a much larger number of log lines, resulting
in many more generic templates. We further skipped the
processing of the time stamp and manually set it to be
variable, reflected by an asterisk:

[Cluster 1]: 10.0.0.1* - - [*] “GET/
projX/doc* HTTP/1.1” 200 * “http://doc
.acme.com/projX/” “Mozilla/5.0”

[Cluster 2]: 10.1.0.137 - - [*] “GET/
projY/xls7 HTTP/1.1” 200 3574 “http://
doc.acme.com/projY/” “Mozilla/5.0”

[Cluster 3] 10.0.0.13* - - [*] “GET/
projX/doc2p1 HTTP/1.1” 200 849 “http://
doc.acme.com/projX/” “Mozilla/5.0”

[Cluster 4] 10.0.0.130 - - [*] “POST/
edit/doc* HTTP/1.1” 200 * “http://
doc.acme.com/projX/edit.php?page=doc*”
“Mozilla/5.0”.

We now have a method to dissect single log lines, ana-
lyze their content in a characterwise manner, and iden-
tify regions of similarities. These are all prerequisites to
learn data structures and automatically create parsers.

Step 3: Parser Generation

Purpose
Parsers match logs to the syntaxes of known events
and map all values to specific referenceable attributes.
This enables a semantic interpretation of the contents
of log lines and a subsequent application of detection
techniques on the data. Generating parsers manually,
however, is a time-consuming task that requires exten-
sive domain knowledge about the numerous distinct
log events that can occur. Parser-generating algorithms
therefore analyze samples of log data and automatically
create log event templates by determining which parts
of the logs are variable or static.

Main Challenges
Regular expressions facilitate defining sequences of
variables and fixed tokens and thus appear as a logical
choice for log parsers. However, they suffer from slow
runtime performance in comparison to tree-based pars-
ers that leverage the fact that many log events have simi-
lar tokens. Unfortunately, creating dynamically adjusting
parser trees when new events appear or the syntax of
existing events changes, is nontrivial. Parser generators
further rely on many parameters, such as delimiters for
tokens and thresholds that balance over- and underfit-
ting, which are difficult to configure in practice.

Relevant Works
Drain1 uses token similarity to build an event tree.
However, its approach assumes that the number of
tokens is fixed for each event and thus cannot be

86 IEEE Security & Privacy May/June 2022

ANALYZING LOG DATA

applied to logs with optional tokens. The Scalable
Handler for Incremental System log (SHISO)11 also
harnesses similarity to find and merge event tem-
plates. While both methods are incremental, they
do not address the fact that templates tend to over-
generalize through time. Spell,12 on the other hand,
searches for common sequences in log events to
determine static parts.

Our Recommended Approach
Advanced data analysis does much more than cluster-
ing and outlier detection. To enable further analysis of,
e.g., trends, correlations, and value distributions, a first
step is to make the single parts of a log line (i.e., the
features of log data) easily accessible and then iden-
tify which ones carry important information (i.e., they
help us characterize the type of event and its unique
parameters). Effective log parsers enable us to do that.
A tree-based parser approach6 aims at reducing the
complexity of parsing and therefore increasing the
performance. Since there are no commonly accepted
standards that dictate the syntax of logs, developers
may freely choose the structure of log lines produced
by their services and applications. For example, the
syslog standard states that each log line has to start
with a time stamp followed by the host name. How-
ever, the remainder of the syntax can be chosen with-
out restrictions.

Applying standards, such as syslog, causes log lines
produced by the same service or application to be simi-
lar in the beginning but differ more toward the end of
the lines. Consequently, modeling a parser as a tree
leads to a parser tree that includes a common trunk
and branches toward the leaves. A parser tree repre-
sents a graph theoretical rooted out-tree. This means
that during parsing, it processes log lines tokenwise
from left to right, and only parts of the parser tree that
are relevant to the log line at hand are reached. Hence,
this type of parser avoids parsing across the same log
line more than once as would be done when applying

distinct regular expressions. As a result, the complexity
for parsing reduces from O(n) to O(log(n)). Eventu-
ally, each log line relates to one path (branch) of the
parser tree.

Figure 2 depicts a part of a parser tree for web server
access logs. This example demonstrates that a tree-based
parser consists of three main building blocks. The nodes
with bold lines represent tokens with static text patterns.
This means that in all corresponding log lines, a token
with this text pattern has to occur at the position of the
node in the tree. Nodes depicted as ovals enable vari-
able text until the next separator or static pattern along
the path in the tree occurs. Variables are inserted based
on token frequency rather than overall log similarity.11
Optional nodes are used to define tokens that do not
necessarily have to occur.1 The third building block is a
branch element. When the parser tree branches are in a
certain position, only a small number of different tokens
with static text occurs.

Applying a tree-like parser model provides the fol-
lowing advantages in terms of performance and log
analysis quality:

 ■ In contrast to distinct regular expressions, a tree-based
parser avoids parsing across a data entity more than
once because it follows, for each log line, one path of
the parser tree in the graph-theoretical tree that repre-
sents the parser, and leaves out irrelevant model parts.

 ■ Therefore, the computational complexity for log line
parsing is closer to O(log(n)) than O(n) when han-
dling data with separate regular expressions.

 ■ The tree-like structure facilitates referencing all the sin-
gle tokens with an exact path; e.g., “/accesslog/hostip”
enables access to the requesting client’s IP address.
Thus, parsed log line parts are quickly accessible so that
rule checks can pick out only the data they need with-
out searching the tree again. Furthermore, the structure
facilitates quick applications of anomaly detection algo-
rithms to different tokens and correlating information
of different tokens within a single line and across lines.

Figure 2. A log line parser tree.

IP Time Stamp

GET

POST

/projX/doc

/projX/doc2p1

/projY/xls7

/edit/doc

docID SIZE

SIZEdocID

HTTP/1.1

HTTP/1.1

HTTP/1.1

HTTP/1.1

200

200

200

200

849

3,574

http://...

http://...

http://...

http://...

Mozilla/5.0

Mozilla/5.0

Mozilla/5.0

Mozilla/5.0

www.computer.org/security 87

Example
Using the preceding templates, we steer the creation of
a tree-like parser by applying the described parser gen-
eration methodology. Notice that the resulting tree (see
Figure 2) may differ depending on the selected con-
figuration parameters that influence whether different
values result in a variable node or branching point. For
instance, the request size would naturally be considered
a variable value; however, if only a few different sizes
are recorded in the log data, it could also be modeled
as parallel branches, each consisting of a static but dif-
ferent value. Eventually, we gain a tree structure where
each node is referenced by a unique path to retrieve its
value. Further generalizing this view, e.g., introducing
variable nodes for the response code, URL path, and
user agent, the model becomes generally applicable.
Table 1 shows the first log line of our example, dis-
sected according to the generalized parser model. In the
analysis phase, the different tokens are referenced with
the paths given there:

10.0.0.130 - - [04/Mar/2021:06:55:35] “GET/
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”.

With the tree-like parser, we have the means to
match incoming log lines to observed structures, and,
thus, we can categorize events. Furthermore, we are
able to distinguish between static and variable parts,
which is an important means of feature selection for
the machine learning algorithms applied on top of log
data. Regardless of whether domain-specific and cus-
tomized algorithms or general-purpose algorithms are
employed (such as neural networks, principal compo-
nent analysis, and long short-term memory), feature
selection is a mandatory prerequisite for analysis and
anomaly detection.

Step 4: System Behavior Modeling
and Machine Learning-Based
Anomaly Detection

Purpose
Log analysis frameworks keep track of all system and
user behavior in high detail, enabling precise reasoning
about what happened when. Unfortunately, this also
means that immense volumes of log data are produced
nonstop. While humans are able to dive into specific
passages of these logs and interpret recorded activities,
the sheer amount of data renders manual monitoring
impossible. Therefore, anomaly detection recognizes
unusual events and alerts analysts to relevant logs that
possibly relate to attacks that were not discovered by
rule-based monitors.

Main Challenges
Log data are generated and analyzed in streams,
meaning that learning and detection take place con-
tinuously and in parallel. This prevents applications
of machine learning methods that require multiple
passes through data. Moreover, log data often contain
traces of erratic user behavior that is difficult to distin-
guish from malicious intentions and causes high false
alarm rates. Finally, logs usually have to be interpreted
within their context of occurrence, e.g., the time of day
and related events.

Relevant Works
He et al.13 use event count vectors for frequency-based
detection with clustering and principal component anal-
ysis. Furthermore, they detect new event sequences
with automatically mined invariants. However, these
approaches do not adequately address the fact that val-
ues also have to be taken into account when detecting
anomalies. Deeplog,14 too, detects anomalies in event
sequences but by using neural networks. LogRobust
employs semantic word vectors as input to a neural net-
work. Unfortunately, neural networks often suffer from
low explainability and are unsuitable for online learning.

Our Recommended Approach
Most machine learning approaches suffer from several
drawbacks when applied to online anomaly detection on
log data, as discussed previously. Specifically, complex
“monolithic” models are of limited use in an environ-
ment that undergoes frequent changes, such as updates
in computer systems. Fine/granular, explainable models
that may be adapted to new situations are required.14,15

Table 1. Token paths and values.

Node (parser path) Token value

/accesslog/hostip 10.0.0.130

/accesslog/time_model 04/Mar/2021:06:55:35

/accesslog/time_model/time 1614837335

/accesslog/time_model/timezone 0

/accesslog/method GET

/accesslog/request /projX/doc1

/accesslog/protocol HTTP

/accesslog/version 1.1

/accesslog/status 200

/accesslog/size 3844

/accesslog/referrer http://doc.acme.com/projX/

/accesslog/useragent Mozilla/5.0

88 IEEE Security & Privacy May/June 2022

ANALYZING LOG DATA

In the following, we provide insights into the abilities of
some machine learning approaches that are particularly
useful for online log data analysis. Other than existing
works,13 we design detectors for the analysis of events
and values occurring in log data. With these few meth-
ods, it already becomes rather hard for a hacker to mount
a successful attack unnoticed. For more details about the
concrete algorithms, we refer the reader to Skopik et al.6

Attack Scenario
The attacker Mallory has gained remote access to local
client 10.0.0.130 and tries to collect as many resources
as possible from the web server for later exfiltration.

Simple Detectors
Detection of new values. Mallory simply uses Wget
to crawl (parts of) the web server and leaves traces in
logs similar to the one in the following. Here, specifi-
cally, the user agent can easily be detected as the new
value “Wget/1.20.3 (linux-gnu)” in the path “/access-
log/useragent” because, until analyzing this event, the
only observed user agent was “Mozilla/5.0”:

10.0.0.130 - - [14/May/2021:06:06:18] “GET/
projX/doc1 HTTP/1.1” 200 4569 “-” “Wget/
1.20.3 (linux-gnu)”.

Detection of new value combinations. Mal-
lory changes the user agent to the legitimate standard
user agent “Mozilla/5.0” and thus evades detection at
first. She, however, attempts to access a resource from
a directory that was never retrieved by the client she
owns, e.g., “GET/projY/xls7.” Since, to this point, the
IP “10.0.0.130” occurred only with resources “/projX/
doc1,” “/edit/doc2,” “/projX/doc2,” “/projX/doc2p1,”
and “/edit/doc1,” this triggers a new combination of
values at paths “/accesslog/hostip” and “/accesslog/
request” that was never observed. Notice that the advan-
tage of character-based templates comes into play. If a
huge number of documents resides within “/projX/,” we
could generally consider accesses to documents therein
as normal, but we may still alert on access to documents
in “/projY/.” In addition, it would be possible to use
even more paths to increase the granularity of the value
combination analysis. Specifically, adding the request
method at path “/accesslog/method” to the aforemen-
tioned paths enables us to analyze which resources are
accessed by which users as well as how they are retrieved.
Be aware that training the models takes considerably
longer for more complex detector configurations.

Time Series Analysis
Improved attack. Having learned from previous expe-
riences, Mallory accesses only legitimate resources with

a valid user agent string. But, since she is in a hurry,
she does it in bursts; i.e., she downloads numerous
resources in short time intervals.

Detection of frequency anomalies. The seasonal
autoregressive integrated moving average (SARIMA)6
model predicts how many events of a specific type and
source are considered normal based on a history of obser-
vations, and it enables alerting on any significant devia-
tion. If, let us say, 10–20 document requests per hour
have been perceived in the past few observation cycles for
user 10.0.0.130, Mallory’s attempt to retrieve documents
in bulk (say, 100 requests in 1 h) will be detected.

Correlation Analysis
Advanced attack. Mallory again changes her behavior
and carries out a much slower moving attack; e.g., she
downloads only a couple of resources per hour to evade
SARIMA detection.

Detection of divergent correlations. Going back to
what we consider normal behavior, the log data listing
shows that 10.0.0.130 triggered seven HTTP requests,
specifically, five GET and two POST. After observing
requests for a longer duration, a certain ratio of GET/
POST requests will emerge depending on the user’s
typical activities. If Mallory polls the web server for
new documents, through time, she will issue many GET
requests, but no POST requests, and therefore disturb
this ratio. A variable correlation detector aims to estab-
lish a baseline (i.e., an expected value that is considered
normal) and alert on significant deviations from it. For
example, using aforementioned data, the learned model
could detect that a reasonably sized sample of events
with IP “10.0.0.130” occurs with a GET request in 70%
and a POST request in 30% of cases, while for all other
IP addresses, the ratio is around 95% and 5%. Deviations
reported by statistical tests on sufficiently large sections
of the data (e.g., GET requests made by “10.0.0.130”
increase to 90%) are reported as anomalies.

Sequence Detection
Stealthy attack. Mallory expands her remote access to
several internal clients, not just 10.0.0.130, and is now
able to collect only small portions of the resources from
each client she owns. As a consequence, there are no
request bursts from single IPs, nor does the correlation of
client IPs to request methods change significantly. This
way, Mallory hopes to evade detection once and for all.

Detection of breaking sequences. Usually, a GET
request to a single HTML site triggers a set of subre-
quests to fetch linked content (we assume that caching
is disabled on the client side to make this example eas-
ier). Whenever doc2 is fetched, doc2p1 is, too. Thus,
the detector learns the sequence “/projX/doc2” fol-
lowed by “/projX/doc2p1” as normal behavior. Since

www.computer.org/security 89

Mallory attempts to crawl a page with a command line
tool and not a browser, she fetches linked content only
once and leaves out, e.g., linked images, such as a site
logo that is embedded on every page. This breaks previ-
ously observed and learned sequences, which is easily
detected. Note that detection complexity here mainly
depends on the lengths of the analyzed sequences; i.e.,
a sequence length of two, as in the preceding example,
enables efficient learning but has less model granularity
than larger sequence lengths that require long training
phases and tend to overfit the data more easily.

L og data analysis and anomaly detection in com-
puter networks need to cope with some significant

challenges, such as frequent changes to observed sys-
tems (which is not the case for other machine learning
domains), a certain degree of learned model adaptability
(which is not the case for most classic machine learning
approaches), and a large amount of complex data that
need to be processed in streams (in contrast to offline
multipass analysis). A multitude of approaches are
available, from rather simple detectors to much more
complex analysis solutions that account for the interde-
pendencies of log events, including sequence and time
series analysis.

Keep in mind, the more complex detectors we apply,
the more likely we are to discover malicious behavior.
However, the disadvantages of using complex detec-
tors are 1) they are much more complex to configure
and maintain, 2) it takes longer for them to learn, and
3) they are prone to high false positive rates. The art is
to find the sweet spot between detecting enough anom-
alies to act in time and not drowning in false alerts.
AMiner extends any existing security solution, such as a
Security Information and Event Management solution
(SIEM) and Elastic Stack (https://www.elastic.co),
for event monitoring. Therefore, it provides in-depth,
high-performance online log analysis and anomaly
detection, employing various smart and sophisticated
detectors far beyond event search and signature-based
detection. For a more comprehensive review of the
material in this article, please refer to Skopik et al.6

Acknowledgments
This work was supported in part by the Austrian FFG
project DECEPT under grant 873980, and in part by
the European Union H2020 project GUARD under
grant 833456 and the EDIDP project PANDORA
under grant SI2.835928.

References
 1. P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online

log parsing approach with fixed depth tree,” in Proc. IEEE

Int. Conf. Web Services (ICWS), June 2017, pp. 33–40. doi:
10.1109/ICWS.2017.13.

 2. V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detec-
tion: A survey,” ACM Comput. Surveys (CSUR), vol. 41,
no. 3, pp. 1–58, 2009. doi: 10.1145/1541880.1541882.

 3. R. Vaarandi, “A data clustering algorithm for mining pat-
terns from event logs,” in Proc. 3rd IEEE Workshop IP Oper.
Manage. (IPOM 2003)(IEEE Cat. No. 03EX764), Oct.
2003, pp. 119–126. doi: 10.1109/IPOM.2003.1251233.

 4. A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios,
“Clustering event logs using iterative partitioning,” in Proc.
15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
June 2009, pp. 1255–1264. doi: 10.1145/1557019.1557154.

 5. F. Zulkernine, P. Martin, W. Powley, S. Soltani, S.
Mankovskii, and M. Addleman, “Capri: A tool for mining
complex line patterns in large log data,” in Proc. 2nd Int.
Workshop Big Data, Streams Heterogeneous Source Mining,
Algorithms, Syst., Programming Models Appl., Aug. 2013,
pp. 47–54. doi: 10.1145/2501221.2501228.

 6. F. Skopik, M. Wurzenberger, and M. Landauer, Smart Log
Data Analytics: Techniques for Advanced Security Analysis,
1st ed. New York: Springer-Verlag, 2021.

 7. P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards auto-
mated log parsing for large-scale log data analysis,” IEEE
Trans. Dependable Secure Comput., vol. 15, no. 6, pp. 931–
944, 2017. doi: 10.1109/TDSC.2017.2762673.

 8. R. Vaarandi, “A breadth-first algorithm for mining fre-
quent patterns from event logs,” in Proc. Int. Conf. Intell.
Commun. Syst., Nov. 2004, pp. 293–308.

 9. L. Tang, T. Li, and C. S. Perng, “LogSig: Generating sys-
tem events from raw textual logs,” in Proc. 20th ACM Int.
Conf. Inf. Knowl. Manage., Oct. 2011, pp. 785–794. doi:
10.1145/2063576.2063690.

 10. C. Notredame, “Recent evolutions of multiple sequence
alignment algorithms,” PLoS Comput. Biol., vol. 3, no. 8,
p. e123, 2007. doi: 10.1371/journal.pcbi.0030123.

 11. M. Mizutani, “Incremental mining of system log for-
mat,” in Proc. IEEE Int. Conf. Services Comput., June 2013,
pp. 595–602. doi: 10.1109/SCC.2013.73.

 12. M. Du and F. Li, “Spell: Streaming parsing of system event
logs,” in Proc. IEEE 16th Int. Conf. Data Mining (ICDM),
Dec. 2016, pp. 859–864. doi: 10.1109/ICDM.2016.0103.

 13. S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report:
System log analysis for anomaly detection,” in Proc.
IEEE 27th Int. Symp. Softw. Rel. Eng. (ISSRE), Oct. 2016,
pp. 207–218. doi: 10.1109/ISSRE.2016.21.

 14. M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learn-
ing,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security,
Oct. 2017, pp. 1285–1298. doi: 10.1145/3133956.3134015.

 15. X. Zhang et al., “Robust log-based anomaly detection on
unstable log data,” in Proc. 27th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., Aug. 2019,
pp. 807–817. doi: 10.1145/3338906.3338931.

90 IEEE Security & Privacy May/June 2022

ANALYZING LOG DATA

Florian Skopik is head of the cybersecurity research pro-
gram at the Austrian Institute of Technology, Vienna,
1210, Austria. His research interests include critical
infrastructure protection, intrusion detection, and
national cybersecurity. Skopik received a Ph.D. in
computer science from Vienna University of Technol-
ogy. He is a member of various conference program
committees (e.g., Symposium on Applied Comput-
ing, International Conference on Availability, Reli-
ability and Security, International Conference on
Critical Information Infrastructure Security), edito-
rial boards, and standardization groups, such as ETSI
TC Cyber, IFIP TC11 WG1, and OASIS CTI. He fre-
quently serves as a reviewer for numerous high- profile
journals, including Elsevier's Computers & Security
and ACM Computing Surveys. He is a Senior Member
of IEEE. Contact him at florian.skopik@ait.ac.at.

Max Landauer is a scientist at the Austrian Institute
of Technology, Vienna, 1210, Austria. His research
interests include log data analysis, anomaly detection,
and cyberthreat intelligence. Landauer is a Ph.D. can-
didate in computer science at the Vienna University
of Technology. His Ph.D. studies are a cooperative
project between the Vienna University of Technology
and the Austrian Institute of Technology. Contact
him at max.landauer@ait.ac.at.

Markus Wurzenberger is a scientist and project manager
at the Austrian Institute of Technology, Vienna, 1210,
Austria. His research interests include log data analy-
sis with a focus on anomaly detection and cyberthreat
intelligence. Wurzenberger received a Ph.D. in com-
puter science from Vienna University of Technology.
Contact him at markus.wurzenberger@ait.ac.at.

IEEE TRANSACTIONS ON

BIG DATA

For more information on paper submission, featured articles, calls for
papers, and subscription links visit: www.computer.org/tbd

TBD is financially cosponsored by IEEE Computer Society, IEEE Communications Society, IEEE Computational Intelligence
Society, IEEE Sensors Council, IEEE Consumer Electronics Society, IEEE Signal Processing Society, IEEE Systems, Man &
Cybernetics Society, IEEE Systems Council, and IEEE Vehicular Technology Society

TBD is technically cosponsored by IEEE Control Systems Society, IEEE Photonics Society, IEEE Engineering in Medicine &
Biology Society, IEEE Power & Energy Society, and IEEE Biometrics Council

SUBSCRIBE AND SUBMIT

SUBMIT
TODAY

Digital Object Identifier 10.1109/MSEC.2022.3171998

