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1 Introduction
Among the many types of cyber attacks that security professionals need to deal with on a regular basis, kernel-
space rootkits pose a particularly severe threat. Once installed, these rootkits provide attackers with permanent
access to compromised systems and enable the execution of arbitrary commands with high (root) privileges; hence,
the name rootkit [10]. On top of that, kernel-space rootkits are designed to effectively make themselves invisible
to users by interfering with low-level functions of the operating system’s kernel to hide their own presence
[3, 37]. Real-world examples of cyber attacks involving rootkits can be found in many recent threat reports,
for example, the 2020 CrowdStrike Global Threat Report [11] mentions an attack that involved a customized
version of a publicly available rootkit that was used to interfere with system functions for stealthy operation.
Other sources report the use of rootkits to prevent detection of cryptocurrency-mining malware [20], hiding
of a malicious shared library and overwriting symbolic links [24], and hiding of network connections when
redirecting network traffic [8].
Most common intrusion detection mechanisms rely on the recognition of signatures such as byte patterns

that are known to correspond to certain malware [3]. Unfortunately, this strategy is generally not sufficient for
comprehensive protection against rootkits, because no signatures are available for novel rootkits or modified
versions of existing ones [7]. As a consequence, alternative detection methods, such as cross-view that locates
discrepancies between different system levels to identify hidden objects, have been investigated in the past [28].

However, in their recently published survey, Stühn et al. [38] conclude that prevalent mechanisms for rootkit
detection are insufficient. Their evaluation of several common intrusion detection systems demonstrates that no
single solution is capable of reliably detecting various types of rootkits. In addition, they find that the detection
performance of these tools heavily depends on domain knowledge about the compromised system and the
deployed rootkits, which limits their applicability in real-world use-cases. Moreover, Nadim et al. [28] emphasize
the problems of forensic approaches and express the need for an intelligent and lightweight approach that is
capable of detecting novel rootkits at runtime. In this article, we therefore propose a generalized approach for
real-time detection of kernel-space rootkits based on statistical and semi-supervised anomaly detection techniques.
The main idea behind our approach is that rootkits need to inject code when interfering with the operating
systems to hide their presence, which causes that the overall runtime of that modified code block increases,
because additional instructions need to be executed [7, 25]. Our detection method thus captures normal time
intervals of and between executed kernel functions within system calls and recognizes significant delays with
respect to these normal distributions as indicators for rootkits. Thereby, our approach goes beyond existing works
that only use execution times of entire system calls, neglect multimodal features in collected datasets, and do
not consider the influence of system conditions and noise [4, 14, 26]. We emphasize that our approach does not
aim to replace any existing security measures against rootkits, such as signature-based detection approaches or
cross-view, but instead provides an additional line of defense that complements state-of-the-art detection systems.

There are several challenges in designing a reliable detection system based on shifts in distributions of function
timings. On the one hand, there is a vast number of potentially relevant functions in the kernel that could
be considered for analysis, and there is no trivial way to collect time measurements from all of them. On the
other hand, the runtime of functions often depends on their context of execution, which makes some of them
unreliable for rootkit detection and sources of false alerts. With this article, we aim to overcome these challenges
by answering the following research questions. RQ1: What system calls enable the observation of rootkits that
hide files? RQ2: How can delays of relevant function calls be observed? RQ3: To what degree can anomaly detection
techniques leverage system call function timings to uncover hidden rootkit activities?
While investigating the topic of rootkit detection, we noticed that one of the biggest problems that currently

holds back research in the area of anomaly-based rootkit detection is the lack of data that can be used to evaluate
rootkit detection approaches [28]. We therefore publish the datasets generated as part of our evaluation online.1

1https://zenodo.org/records/14679675.
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Moreover, our review of open source rootkits for the Linux operating system showed that none of them are able to
run on modern kernel versions. We therefore provide the rootkit developed in course of this study as open source
code.2 To facilitate reproducibility of the results presented in this article, we also publish the implementation of
our probing and detection mechanisms online.3 We hope that this will encourage others to extend our evaluation
and generate even more public datasets for future research. We summarize our contributions as follows:

—a framework and open source implementation for kernel tracing with Extended Berkeley Packet Filter
(eBPF) probes,

—an open source rootkit and publicly available datasets of kernel function time measurements, and
—a detection mechanism for delayed function call timings.

The remainder of this article is structured as follows: Section 2 reviews rootkits and detection mechanisms.
Section 3 outlines the concept of our approach. In Section 4, we investigate relevant kernel functions and explain
how we use probes for time measurement. In Section 5, we describe our approach for detection of anomalies. We
evaluate our approach in Section 6 and discuss the results in Section 7. Finally, Section 8 concludes this article.

2 Background and Related Work
In this section, we provide a review of existing open source rootkits and discuss related works in the research
area of rootkit detection.

2.1 Rootkits
This section explains the definition of a rootkit, enumerates common methods used by rootkits, and reviews open
source rootkits.

2.1.1 Definition. The term rootkit describes a software kit that provides root access to a system, which is the
highest-privileged role on a system [10]. While rootkits by themselves are thus not inherently malicious [3],
they are often illicitly used as part of cyber attacks that allow adversaries to gain privileged access on a system
without permission. After a rootkit has been deployed on a target system, it is often used to hide objects, such as
files, processes, open ports, established connections, and the rootkit itself [3, 37], to evade detection and enable
attackers with continuous privileged access to prepare further attack steps such as information gathering [39].

2.1.2 Methods. The capability to effectively hide system objects and themselves from manual inspection and
automatic detection systems is essential for rootkits to avoid operators that become aware of the intrusion,
try to remove the rootkits, or disconnect the system from the network. There are several methods by which
rootkits interfere with systems, and it is common to differentiate them based on the layer where the rootkit
resides: kernel-space, where all kernel activities are carried out with highest privileges, and user-space, which
is a lower-privileged domain containing user applications and libraries [38]. One of the most straightforward
methods used by user-space rootkits is to exchange system binaries such as “ls” with modified versions that
skip certain elements. This method has become outdated nowadays as it is trivial to detect by checksums [5].
A modern alternative is to wrap functions in dynamically linked system libraries; in particular, many user-space
rootkits exploit the “LD_PRELOAD” environment variable [38]. This variable instructs the dynamic linker to load
a shared library before any other libraries when a program is executed, which allows custom and potentially
malicious libraries to override functions in standard libraries.
Since user-space rootkits rely on the replacement of visible components such as binaries or libraries, their

ability to hide from system-level inspection is limited. In contrast, kernel-space rootkits are generally considered
to be significantly more difficult to detect since they have higher control over the system [42] and are thus better

2https://github.com/ait-aecid/caraxes.
3https://github.com/ait-aecid/rootkit-detection-ebpf-time-trace.
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at evading detection by intrusion detection systems residing in user-space [28]. In this article, we therefore focus
only on kernel-space rootkits. There are several methods by which kernel-space rootkits operate; we enumerate
some of the most common ones in the following: (i) Loading the rootkit as a Loaded Kernel Modules (LKM);
(ii) Leveraging eBPF, which serves a similar purpose as LKM, but offers advantages such as higher stability
and prebuilt hooks for system calls [38]; (iii) Loading the rootkit into the initial file system of an operating
system, which is loaded before the actual root file system is mounted [22]; (iv) Kernel patching, i.e., adding rootkit
functionality to kernel source code, exchanging the kernel image, and forcing a reboot; (v) Containerization, which
creates a name space, starts the init system inside a container, and leaves the rootkit outside of that container
where it is not visible [23]; (vi) Virtualization, which moves a running operating system into a hypervisor. As we
show in the following, rootkits often use several of these methods in combination [33].

2.1.3 Open Source Kernel-Space Rootkits. We review common open source rootkits for the Linux operating
system and analyze how they interact with the kernel. Puszek4 is an LKM rootkit that first locates pointers to
specific system calls in the system call table and then replaces the getdents system call to hide files. Instead
of wrapping an entire system call, Suterusu5 replaces a function within the getdents system call, named filldir.
Specifically, it does so when filldir is passed as a function pointer in one of the arguments of the context actor.
Diamorphine6 and Reveng_rtkit7 are LKM rootkits that make use of kprobes, a mechanism for debugging and
tracing, to locate the system call table and wrap around the getdents system call. Reptile8 is another LKM rootkit
that uses khook9 for binary patching of the filldir function; the mechanism behind this hacking tool is similar
to kprobes. Generic Linux Rootkit (GLRK)10 makes use of ftrace, a function tracer built into the Linux operating
system, to execute code before and after function calls, which is equivalent to function hooking. However, the
current implementation of the rootkit is designed for privilege escalation and does not support hiding; thus, no
function is wrapped. Finally, Boopkit11 is an eBPF rootkit that enables process hiding, remote activation, and
command execution. Specifically, the rootkit uses probes at system calls to skip the names of predefined process
IDs when listed. Boopkit is another example of a rootkit that wraps the getdents system call for hiding.

Table 1 summarizes important features of the reviewed rootkits, including the function wrapped by the rootkit
for the purpose of hiding. Note that most rootkits manipulate multiple system calls to achieve various goals and
that our review solely focuses on hiding capabilities. The table also specifies the kernel versions supported by
each rootkit. Notably, none of the reviewed rootkits that employ function wrapping are compatible with modern
Linux kernel versions, limiting their applicability for evaluations. To address this gap, we develop a new rootkit,
which we introduce in Section 6.1.

2.2 Rootkit Detection
This section explains rootkit detection methods with a focus on learning-based detection approaches.

2.2.1 Methods. Given the diverse types of rootkits and the various ways in which they interact with systems,
it stands to reason that many different methods have been developed for rootkit detection. In their recent study,
Nadim et al. [28] divide existing methods into six classes: (i) Signature-based methods make use of a predefined
list of static signatures such as byte patterns that correspond to known rootkits [3]. Despite their simplicity,
these methods pose a highly robust form of rootkit detection with low false-positive rates, which is why most

4https://github.com/Eterna1/puszek-rootkit.
5https://github.com/mncoppola/suterusu.
6https://github.com/m0nad/Diamorphine.
7https://github.com/reveng007/reveng_rtkit.
8https://github.com/f0rb1dd3n/Reptile.
9https://github.com/milabs/khook.
10https://codeberg.org/sw1tchbl4d3/generic-linux-rootkit.
11https://github.com/krisnova/boopkit.
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Table 1. Overview of the Analyzed Open Source Rootkits

Rootkit
Name

Supported
Kernels

Rootkit
Method

Hooking
Mechanism

Wrapped
Function

Puszek 4.x LKM System call table getdents
Suterusu 2.6–3.x LKM Function pointer in argument filldir

Diamorphine 2.6–6.1 LKM kprobes getdents
Reveng_rtkit 5.11 LKM kprobes getdents

Reptile 3.10–5.x LKM Binary patching filldir
GLRK 6+ LKM ftrace -
Boopkit 5.16+ eBPF eBPF getdents

well-known host-based intrusion detection systems primarily rely on signatures. Unfortunately, they are unable
to detect unknown rootkits for which no signatures exist [3] and can also be evaded by slightly modifying
existing rootkits as well as mutating rootkits [32]. (ii) Behavior-based detection aims to recognize actions of
rootkits through anomalous states or behavior patterns observed in the operating system, such as unusual errors.
(iii) Cross-view-based detection compares the visibility of the same objects on separate domains. Since rootkits
often only hide objects on one domain, any divergences may indicate the presence of rootkits [32]. For example,
different outcomes obtained from enumerating kernel modules in the user-space and searching loaded modules
in memory may indicate a hidden rootkit. However, note that this method does not necessarily reveal the rootkit
itself, but only some of its hidden objects [3]. (iv) Integrity-based detection recognizes changes to the kernel’s
static or dynamic data structures as opposed to recognizing the effects of such changes. In particular, changes
of parts that are most often targeted by rootkits, such as patching of the system call table, are viable indicators
for rootkit activity [3]. (v) Hardware-based detection leverages some of the other concepts mentioned in this
enumeration but conducts analyses on an external device that cannot be accessed from the monitored host. (vi)
Learning-based detection requires training data to capture a model that is subsequently used to classify unseen
test data comprising data from both normal system behavior and rootkit activity. In the most common case, the
training data only comprises normal instances and anomalies that are detected as instances that deviate from
the normal behavior model. Given that learning-based detection is the most relevant detection concept for this
article, we summarize existing works in this research area in the following.

2.2.2 Learning-Based Detection. As mentioned in the previous section, source code of rootkits may reveal
their malicious nature, but signature-based approaches fail to classify unknown rootkits. In order to overcome
this problem, researchers have trained neural networks on byte patterns of many malware samples to generate a
model that enables classification of unseen samples. Raff et al. [30, 31] thereby present an important milestone
by resolving the challenge of designing neural networks that are capable of processing large malware files
with enormous byte pattern lengths. However, recent research has shown that these neural networks may be
vulnerable to adversarial attacks [2]. Moreover, the source code of kernel-space rootkits is usually not accessible
for inspection by conventional intrusion detection systems [28, 42]. As a consequence, researchers have considered
to use dynamic features that are captured during execution of rootkits rather than static information such as
their source code and byte patterns [12, 15].
Learning-based detection based on dynamic analysis methods requires collection of data that is affected by

rootkit activity and available in sufficient volumes to enable model training. Some authors have therefore turned
to Hardware Performance Counters (HPC), which are special registers in microprocessors used for counting
events [36]. Wang and Karri [40] compare the event counts from normal and rootkit samples. Singh et al. [37]
identify relevant HPCs through experimentation with five synthetic rootkits. Sayadi et al. [35] analyze HPCs as
time-series. These approaches generally rely on machine learning methods such as Support Vector Machines
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(SVM), naive bayes classifiers, decision trees, and neural networks. Das et al. [13] point out some downsides of
HPCs, in particular, the need for expert knowledge to understand and collect HPCs correctly, diversity of HPCs
across different processors, non-determinism of counters, and overcounting. Pattee et al. [29] add that lack of
documentation for HPCs, need for dedicated hardware, as well as energy constraints for machine learning in
resource-limited devices pose issues for such detection approaches. Lu and Lysecky [25] point out that rootkits
are able to mimic normal behavior patterns and recommend to focus on event timing, which is more difficult for
them to replicate.

Several approaches therefore make use of event timing rather than count data for detection. Zimmer et al. [43]
detect buffer overflow attacks in cyber-physical systems by measuring timing bounds at specific checkpoints.
Similarly, Salem et al. [34] use inter-arrival curves to estimate lower and upper bounds for event occurrence
times. Lu and Lysecky [25] feed event timings into a one-class SVM and find that this approach achieves better
detection accuracy than range-based models that estimate limits of allowed time delays. Thereby, they split up
these timings into fine-granular subcomponent timing models to reduce influences of the operating system on
time measurements and increase model accuracy. Carreon et al. [7] point out that lumped timing models suffer
from high variability, which limits their ability to detect anomalies. The authors thus also focus on subcomponent
timings and use the boundaries of cumulative distribution functions of time measurements to assign anomaly
scores to unseen samples.

Some timing-based approaches specifically focus on system calls from standard operating systems. For example,
Ezeme et al. [18] propose a framework that captures the order of system calls as well as their relative duration
measured in CPU cycle counts and predict the expected counts for detection. Luckett et al. [26] use neural
networks to classify normal system and rootkit behavior based on system call timing. While the overall idea is
similar to our work, they pursue supervised classification rather than detection and measure the runtime of entire
system calls only. Another issue in their paper is that the method for data collection is not sufficiently described,
which limits reproducibility of their results [27]. Dawson et al. [14] also capture isolated system call timings with
strace; specifically, they test their detection approach using the system calls open, close, read, futex, mmap2, and
clock_gettime. Brodbeck [4] measures system call latencies in mobile operating systems. Their findings suggest
that rootkits can cause delays, but they do not analyze the complex distributions of system call timings in detail
and also do not evaluate any detection algorithms. Contrary to these works, which capture the timing of entire
system calls, our approach measures the inter-arrival timings of various functions within system calls, which
allows us to isolate and reduce the effect of irrelevant factors such as the time needed to write and read from
disk. Moreover, we are able to conduct our analyses on more fine-granular levels and capture even very slight
time shifts, which can be of advantage when detecting rootkits that only modify these inner functions, such as
Reptile (cf. Section 2.1.3). In addition, our detection method is designed for multimodal features that are prevalent
in time measurements of system calls. We also investigate the influence of varying system conditions in detail. In
the following, we outline the overall concept of our approach.

3 Concept
In this section, we first describe our threat model and then provide an overview of the detection approach
proposed in this article.

3.1 Threat Model
Following the attacker-centric perspective recommended by Carlini et al. [6], we formulate our attack model
based on the attacker’s goals, knowledge, and capabilities.

3.1.1 Attacker’s Goals. We assume that the attacker has previously gained root access to a compromised
system through some unknown attack vector and has not been detected so far. The attacker’s primary goal is to
maintain stealthy and persistent access over the compromised system by hiding their own activities as well as
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malicious artifacts (e.g., files or processes). The attacker achieves this by installing a kernel-space rootkit that
manipulates system call functions, in particular within system calls responsible for directory enumeration. We
emphasize that the detection of the original intrusion that enabled the attacker to access the system and deploy
the rootkit is explicitly not targeted by the detection algorithm proposed in our article, which solely focuses on
the detection of system interference from active rootkits.

3.1.2 Attacker’s Knowledge. We assume that the attacker has detailed knowledge of the compromised system’s
operating system and is therefore able to install the kernel-space rootkit without triggering intrusion detection
mechanisms that may be in place. We point out that our approach is designed to detect common rootkit activities;
it is not designed to protect against adversaries with white-box access to our detection system that adapt their
behavior to evade detection. We therefore assume that the attacker is not aware that the detection approach
presented in this article is actively monitoring the system for changes of kernel function timings. Even if the
attacker has knowledge about the existence of such timing-based detection approaches in general, we assume
that they are not aware of the exact set of kernel functions monitored on this system.

3.1.3 Attacker’s Capabilities. The attacker is capable of installing a kernel-space rootkit through some arbitrary
attack vector that is not detected by any intrusion detection system present on the compromised system. Through
that rootkit, the attacker is able to manipulate kernel function calls in such a way that certain system objects,
e.g., specific files or processes, are effectively hidden from users and applications. After rootkit deployment, the
attacker is able to ensure functional correctness of the modified system call so that neither a normal system
user nor an application perceives any technical instability of the compromised system. We point out that any
adversarial attacks on our detection system are considered out of scope, i.e., the attacker cannot observe or
manipulate the time measurements continuously collected by our detection system, nor can they ascertain or
reconstruct how these measurements are taken.

3.2 Overview of the Detection Approach
When kernel-space rootkits interfere with operating systems, they usually do so by wrapping around certain
functions of system calls and thereby modifying the code executed at that position. As a consequence, the duration
it takes to run the changed code is different in comparison to the runtime of the original code [7]. Specifically, the
additionally executed code increases the overall runtime of the code block. The approach presented in this article
hinges on the assumption that function delta times, i.e., time intervals between certain positions in the executed
code, increase sufficiently to enable differentiation between normal system behavior and rootkit activities.

Figure 1 depicts an overview of our approach. Given that we aim to recognize rootkit activity through changed
function delta times, we need to collect a baseline of measurements from an operating system that is free from
rootkits and compare them to measurements from a system affected by rootkits. In both systems, we assume
that normal user interactions take place continuously and that some of these executed commands trigger system
calls affected by the rootkit, e.g., commands that enumerate files. As part of our approach, we inject probes into
the kernel to capture execution times of inner functions of system calls. In particular, for a predefined set of
functions that are likely to be affected by rootkit behavior, the probes collect and store the absolute timestamps
of entering and returning from those functions as depicted in step (1) in Figure 1. We outline kernel tracing and
probe injection in Section 4. Note that measurements are stored separately for the normal and rootkit case; in
practice it is obviously not straightforward to make this differentiation and collect clean datasets; however, we
argue that the detection of changed system call function timings in comparison to any past system state can
already be useful indication for potential rootkit activity. We discuss practical and online applicability of our
approach in Sections 6.4.3 and 7 in more detail.

Step (2) computes the delta times between pairs of timestamps collected in step (1). To this end, we consider two
strategies: (i) computation of delta times between entry and return point of certain functions, and (ii) computation
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Fig. 1. Overview of our concept that measures system call function timings to detect rootkits through delta time shifts.

of delta times between two subsequently encountered probes independent of the respective function. We discuss
each method in Section 5.1. In steps (3) and (4), we then apply machine learning to classify unseen delta times
and detection of rootkits. Note that we pursue semi-supervised detection, meaning that a portion of only the
normal delta times is used to generate a model of normal behavior [9]; all unseen samples that deviate too much
from that model are detected as anomalies that are potentially caused by rootkit activities. Our method is suitable
for offline detection, where data are forensically analyzed to differentiate between normal and rootkit samples,
and online detection, where the model is incrementally updated and recognizes unusual changes of delta times
on-the-fly. The following sections explain our methods for data collection and outlier detection in detail.

4 Kernel Tracing
In this section, we discuss the relevance of functions in system calls and describe our method to inject probes for
time measurement.

4.1 Analysis of Relevant System Call Functions
Log data are commonly used for anomaly detection in the cyber security domain [21]. Unfortunately, rootkits
have the highest privileges on a system and are thus able to manipulate the contents and generation of log data
in such a way that their presence remains hidden, e.g., by suppressing certain log messages. Even though rootkits
may alter the entire system at will, they cannot easily replicate the system behavior as if they were not present
on the system, since any action that they perform still needs to be executed by the kernel, which is where they
leave detectable traces.
One way to monitor kernel activities is to analyze system calls, which are an interface for user programs to

request resources and interact with the kernel. Most operating systems offer hundreds of system calls,12 with
some of the most common ones being open, read, write, and fork. Some modern host-based intrusion detection
systems are capable of monitoring single invocations of system calls and sequences of system calls have long
been used for malware detection [19]; however, rootkits do not necessarily affect multiple system calls, but may

12https://man7.org/linux/man-pages/man2/syscalls.2.html.
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Fig. 2. Excerpt from the getdents call stack and function timings collected with the function tracer (ftrace).

only affect a single system call or just one of its inner functions. As a consequence, existing intrusion detection
systems do not monitor kernel activity in sufficient granularity to uncover rootkit activities.
Due to the fact that many system calls exist and each of them involves a myriad of functions, making a

reasonable selection for monitoring is vital to limit the amount of data to be analyzed and focus on those points
that are most likely targeted by rootkits. Rather than manually sifting through all available system calls to make
this decision, we reviewed seven open source rootkits (cf. Section 2.1) and found that every single one of them
makes use of the getdents system call or one of its inner functions to enable hiding of files. We also noticed that
getdents is explicitly mentioned in technical reports on cyber attacks involving rootkits [20]. This is intuitively
reasonable since getdents is the only interface for a user program to list the contents of a directory in Linux,
which is an interface that rootkits need to control in order to hide objects, such as files or themselves [4]. We
display a shortened version of the getdents system call in Figure 2, which we generated with the function tracer13
(ftrace). Note that we omit irrelevant functions from the code for brevity and that executed functions may differ
depending on the context in which getdents is invoked. As visible in the figure, the function tracer also provides
time measurements that describe how long it took to complete single functions. These timings are the primary
data source for our detection algorithm. In order to collect time measurements in a structured way, we inject
probes into the kernel, which we describe in the following section.

13https://www.kernel.org/doc/html/latest/trace/ftrace.html.
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Fig. 3. Implementation of our eBPF probe.

4.2 Injection of eBPF Probes
While the function tracer is a viable method to obtain function time measurements, we opt for the more modern
eBPF to implement time-measuring probes. The eBPF is a Linux kernel technology that enables developers to
build programs that run securely in kernel-space. Figure 3 shows our implementation of an eBPF probe. Each
probe first obtains identifiers for the current process (pid) and thread group (tgid) in Line 10, which are stored in
the respective variables in Lines 11 and 12. Then, the current time is measured in nanoseconds in Line 13. Finally,
these variables are written as an event in the ring buffer (Line 14), which is created in Line 1 and managed by the
BPF Compiler Collection14 (BCC) that is also used to inject the probes.

BCC supports injection at enter or return points of all functions that can be traced by eBPF. For each probe, we
therefore obtain two measurements that we refer to as probe-enter and probe-return, respectively, where we
use the name of the function to refer to the probe. For example, for function filldir in Figure 2, we obtain time
measurements from probes filldir64-enter (Lines 11 and 16) and filldir64-return (Lines 13 and 18). To avoid that
our script collecting the events from BCC influences time measurement by triggering system calls when storing
the data, all events are held in memory until all probes are unloaded. Note that some functions cannot be traced
by eBPF and are thus neglected for our analyses.

5 Detection
This section outlines our detection algorithm. We explain two strategies to derive delta times from time measure-
ments and then describe an approach to detect anomalies based on shifted delta times.

5.1 Computation of Delta Times
The main idea behind our detection approach is that it takes more time to execute code of functions that are
wrapped by the rootkit in comparison to executing the original functions without any additions made by the
rootkit [7]. To capture the duration of time intervals between any two probes ?1 and ?2 based on the absolute
time measurements collected as described in the previous section, it is necessary to subtract the timestamp of an
event observed at probe ?2 with the timestamp of the event observed at probe ?1 that chronologically occurs
before. In the following, we use the colon to denote this pairing of probes, i.e., ?1:?2. For example, filldir64-
enter:verify_dirent_name-enter are delta times between the probes at filldir64-enter (Lines 11 and 16 in Figure 2)
and verify_dirent_name-enter (Lines 12 and 17). Note that processes are often running in parallel and their
workflows interleave, causing that chronological sorting alone is not sufficient to correctly pair probes. We

14https://github.com/iovisor/bcc.

Digital Threats: Research and Practice, Vol. 6, No. 4, Article 33. Publication date: December 2025.

https://github.com/iovisor/bcc
https://github.com/iovisor/bcc


Rootkit Detection through Temporal Anomalies in Kernel Activity • 33:11

Fig. 4. Time measurements at probes iterate_dir-enter:iterate_dir-return (left) and filldir64-return:filldir64-enter (right)
depicting longer delta times when the rootkit is active (red) in comparison to normal system behavior (blue).

therefore first split all measurements into groups by process identifier (pid) and then sort all timestamps in each
group in ascending order before subtraction.

To reduce the immense number of possible combinations of probes to a manageable amount, we propose two
strategies for probe pair selection. The first strategy only considers enter and return probes injected at the same
function and subtracts the most recent timestamp of a probe-enter event from the probe-return event, effectively
measuring the time it takes to execute that function. Accordingly, we refer to this strategy as function-grouping
in the following. Note that the described procedure is repeated for each event from every probe. The second
strategy sequentially iterates through all events in chronological order and subtracts the timestamp from the
latter event with the timestamp from the former event, independent of the probe and its corresponding function.
We refer to this strategy as sequence-grouping. Each strategy has its own benefits. While sequence-grouping
captures short delta times between adjacent functions, which enables fine-granular analysis, function-grouping
captures entire functions and may thus be better suited to detect rootkits that wrap around these functions.

Figure 4 depicts two illustrative distributions of delta times, where the left one corresponds to probes iterate_dir-
enter:iterate_dir-return using function-grouping and the right one corresponds to filldir64-return:filldir64-enter
using sequence-grouping. We select these samples, because they both show a visible delay of delta times when
the rootkit is active in comparison to delta times collected during normal system operation. In the following
section, we describe a mechanism that automatically detects these shifts.

5.2 Shift Detection
The key feature of our detection approach is to automatically recognize shifts in delta times that are computed as
described in the previous section. However, the density curves plotted in Figure 4 reveal that even though there is
a visually apparent shift in the distributions of delta times, it is non-trivial to measure that shift and determine
what degree of shift is still tolerable and likely a product of natural variation rather than caused by the rootkit.
In particular, delta times from some probes may be influenced by system conditions and thus too volatile for
use as a baseline. To be able to assess the amount of expected variation, we therefore assume to have several
batches of data at our disposal, where each batch was taken independently over a certain period of time and
contains sufficiently many delta times to estimate their distribution at that point in time. This allows us to apply
statistical tests on the data despite varying system conditions and noise. In the following, we refer to batches
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collected during normal system operation and batches collected while a rootkit is active on the system as normal
and rootkit batches, respectively.
Due to the fact that the distributions of delta times are multimodal (i.e., involve multiple local peaks) and

contain outliers, it is not feasible to simply rely on the mean and standard deviation for statistical testing [26].
To overcome this issue, we compare the quantiles of delta time distributions from different batches, because
quantiles accumulate close to peaks where robust measurements of delta time shifts are possible. For example, a
natural way of determining the shift for the distributions in Figure 4 is to measure the horizontal offset at some
prominent peaks. Moreover, quantiles enable to determine whether only a portion of the delta times has been
shifted, which can be relevant if only some invocations of the same function are affected by the rootkit.
We use equidistant spacing between 0 and 1 for a predefined number of quantiles @ to capture most of the

entire distribution while at the same time ensuring robustness against outliers. For example, for the trivial case
of @ = 1, the median (or 0.5-quantile) will be used, while for @ = 4, the 0.2-, 0.4-, 0.6-, and 0.8-quantiles will be
used. We combine the quantiles of delta times for a set of normal batches in a training set +?1:?2 of size = × @,
where = is the number of training batches and @ is the number of quantiles. For an unseen batch of delta time
quantiles G , which can be from the remaining normal batches or one of the rootkit batches, we compute the
squared Mahalanobis distance using Equation (1), where ` (+?1:?2 ) is the mean of delta times for each quantile
in +?1:?2 and Σ−1 is the inverse covariance matrix of +?1:?2 . We then compute the p-value for a specific ?1:?2
using a j2-test with @ degrees of freedom as stated in Equation (2), where 23 5 is the cumulative distribution
function [17].

�2
?1:?2 =

(
G?1:?2 − ` (+?1:?2 )

)>
Σ−1 (G?1:?2 − ` (+?1:?2 )

)
, (1)

p-value?1:?2 = 1 − j2 (23 5 (�2
?1:?2 , @)). (2)

Low p-values close to 0 indicate that delta times at one or multiple quantiles are significantly shifted from the
expected means considering the variations observed in the training data, while p-values close to 1 indicate the
opposite. Note that neither the distribution of delta times nor their quantiles are assumed to follow a normal
distribution. Instead, we only assume that the values of the same quantile (e.g., the 0.5-quantile) of multiple
batches are normally distributed, which is a fair assumption for the purpose of shift detection in delta time
distributions that are otherwise similar. Changes of delta time distributions in test batches other than shifts may
also reflect in quantile differences; however, we do not consider this problematic as these changes also indicate
anomalous behavior that should be detected. We also emphasize that our proposed method is semi-supervised,
because we assume that our training set only contains normal data and is free from anomalies introduced by
rootkits, while test data may contain batches from both classes.

The aforementioned computation of p-values is applicable to a single combination of probes ?1:?2, independent
of the grouping strategy used. However, many functions within the getdents system call could be targeted by
rootkits, and it is not possible to know beforehand on which combination of probes to focus on. We therefore
propose to involve as many probes as possible for shift detection and combine their respective p-values. Given that
rootkits can wrap any function, i.e., only affect delta times collected from a single probe, we consider it sufficient
if one of the p-values is below a certain threshold \ to detect the entire batch as an outlier that potentially
indicates rootkit activity. The sample is only considered normal if all p-values are above the threshold. In the
following section, we evaluate the effectiveness of this detection method by deploying a rootkit on a real kernel
and analyzing the delta times.

6 Evaluation
This section covers the evaluation of our work. We introduce a novel open source rootkit and describe the
generated public datasets, which we use to evaluate our detection approach.
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Fig. 5. Wrapper for the filldir function.

6.1 CARAXES: A Cyber Analytics Rootkit
We initially planned to select one of the open source rootkits reviewed as part of Section 2.1 for our evaluation;
however, we realized that none of these rootkits are able to run on modern kernels. For example, Diamorphine
overwrites the system call table to perform system call wrapping, which is not possible since Linux kernel version
6.9 started removing the system call table as a security measure to avoid speculative execution. Reptile wraps
around the filldir function rather than an entire system call, but this function has been changed in Linux kernel
version 6.1. In addition, Reptile relies on the function “kallsyms_lookup_name,” which is not available in Linux
kernels above version 6. Similar issues exist for other rootkits. An exception to this observation is GLRK, which
works without issues but unfortunately does not support file hiding.
To overcome this problem, we present a Cyber Analytics Rootkit for Automated and eXploratory

Evaluation Scenarios (CARAXES). We base our implementation on GLRK, which we extend with functionality
to hide files if they contain specific keywords in their names or belong to a certain user or group. Process hiding
is implicitly supported by specifying user and group identifiers of processes to be hidden. We implement two
different ways of hooking into the kernel: wrapping the getdents system call (entire code of Figure 2) and wrapping
the filldir function (Lines 11 and 16 in Figure 2) within that system call. We noticed during our experiments that
our probing mechanism (cf. Section 4.2) prevents the rootkit from wrapping getdents; for this reason, we focus on
filldir wrapping for our evaluation. Figure 5 displays the filldir wrapper, which checks in Line 3 if the name of an
enumerated file contains the keyword MAGIC_WORD and skips the file in case of a match, rendering it invisible.
Otherwise, the wrapper passes all parameters to the original filldir function in Line 7 and returns its result.

CARAXES is designed to be compatible with modern Linux kernel versions and has been tested on version 6.11.
Its implementation and functionality are based on existing open source rootkits and are not tailored to favor our
detection approach. Instead, CARAXES is intended to be generally applicable for a wide range of experimental
scenarios. We make CARAXES publicly available as open source to allow others to generate new datasets and
extend the rootkit with additional features (cf. Section 7).

6.2 Data Generation
This section outlines our procedure for data generation and explains which scenarios we consider for system
variations.

6.2.1 Procedure. To generate the datasets that we use to evaluate our probing framework and detection
approach, we set up a data generation procedure involving the rootkit described in the previous section. Figure 6
visually summarizes our setup, which consists of the following steps: (1) We create a directory that contains two
files; one arbitrary file and one that should be hidden by the rootkit. We identify the file to be hidden through its
name, i.e., the rootkit is programmed to hide all files containing the keyword “caraxes” in their names. (2) We
inject eBPF probes at specific functions using our framework from Section 4. An obvious choice for probing is
filldir because it is the function that is wrapped by the rootkit. However, we point out that the function is also an
interesting choice as it is called twice in close succession (Lines 11 and 16), which provides relevant measurements
for sequence-grouping. We additionally select the following three functions for probing due to their distinct
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Fig. 6. Overview of our data generation procedure.

relations to the wrapped filldir function: iterate_dir (Line 7 in Figure 2), because it is the enclosing function of
filldir and should be directly affected by time delays of its inner functions, verify_dirent_name (Line12), because
it is an inner function of filldir, and touch_atime (Line 27), because of its proximity to the affected filldir function.
Note that we originally selected dcache_readdir (Line 10) instead of iterate_dir as it is the direct enclosing function,
but our tracer was unable to inject the probes at this position (cf. Section 4.2). (3) We then either activate the
rootkit or proceed without an active rootkit; this decision determines the label of the resulting dataset. (4) We
then start a loop that repeatedly executes the “ls” command to list files in the previously generated directory
containing the two files, which performs getdents system calls that involve the wrapped function. The command
is executed 100 times without any waiting time in between. In parallel, we run another loop that continuously
polls the ring buffer to collect time measurements from probes. (5) After completion, the measurement times
are written from memory to the file system, including meta-information such as labels and parameters of the
generation procedure.

We refer to the dataset resulting from this procedure as one batch of data. We run this procedure many times
to collect a sufficiently large amount of normal and rootkit batches to train and test our approach. Between
each batch, we pause the iteration for 10 seconds using the sleep command in order to ensure that there are no
artifacts from previous batches introduced during data collection. Since each iteration takes around 5–10 seconds
to complete, their start times are around 15–20 seconds apart. Consequently, the multi-iteration experiment takes
several hours, enabling analysis of trends or concept drift in the data as time progresses.

6.2.2 Scenarios. In addition to noise, trends, and concept drift originating from the system, parameters of the
evaluation setup need to be taken into consideration when analyzing the data. To investigate the influence of
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Table 2. Overview of the Generated Datasets

Scenario Label Start time End time Batches #Events (median)

Default Normal 10:58:25 11:44:24 150 39,538
Rootkit 11:44:44 12:17:18 100 52,524

File Count Normal 12:17:37 13:05:46 150 78,016
Rootkit 13:06:06 13:40:04 100 89,368

System Normal 13:40:24 14:29:06 150 39,274
Load Rootkit 14:29:27 15:03:56 100 52,115

ls-basic Normal 15:04:14 15:49:45 150 33,230
Rootkit 15:50:04 16:22:15 100 39,818

Filename Normal 16:22:33 17:08:35 150 39,544
Length Rootkit 17:08:55 17:41:30 100 52,120

these factors, we carry out the generation of normal and rootkit batches in five different scenarios: (i) Default. The
procedure is executed as described in Section 6.2.1. (ii) File Count. Other than in the default scenario where one
normal file and another file to be hidden are generated, this scenario involves a random selection of 10–100 files
of each type. (iii) Filename Length. In contrast to the default scenario where names of files consist of at most eight
random characters (and the keyword “caraxes” for files to be hidden), the lengths of file names in this scenario
are randomly selected in the range of 20–60 characters. (iv) ls-basic. We replace the “ls” command that is used to
enumerate files with a custom implementation named “ls-basic”15 that does not rely on any libraries and allows
us to know exactly which system calls are invoked. (v) System Load. We run the tool stress-ng16 in background
while collecting the data to simulate a system under load. The datasets are generated on Ubuntu 22.10 with Linux
Kernel 5.19, 32GB RAM, and 8 vCPUs.

6.3 Datasets
This section provides an overview of three datasets published alongside this article: one dataset of time measure-
ments at probes and two datasets of delta times derived from these time measurements.

6.3.1 Time Measurements at Probes. Table 2 summarizes the first dataset of probe measurements collected as
described in Section 4.2. The table differentiates between normal and rootkit batches as well as the scenario in
which they are collected (cf. Section 6.2.2). In addition, we also provide the start and end times of collection in the
table, which shows that we collected the data successively by iterating through each scenario and alternating
between normal and rootkit cases. For each scenario, we collect 150 normal and 100 rootkit batches. The reason
for this is that we intend to use 50 batches (a third of the normal data) for training and thereby leave a balanced
test set of 100 normal and 100 rootkit batches, respectively. The last column of the table states the median number
of events per batch, which shows that event counts vary across scenarios and that rootkit batches involve more
events compared to normal batches of the same scenario.
Figure 7 provides a more detailed view of the number of events per batch by additionally separating the

counts by probe. The figure reveals several interesting aspects. First, the number of time measurements varies
across probes. For example, the iterate_dir function is invoked less frequently than other probed functions,
causing that fewer timestamps are collected from the probes of that function. This is simply explained by the
program workflow that calls some functions more often than others, e.g., filldir is invoked multiple times within
the iterate_dir function (cf. Figure 2). Second, the enter and return probes of each function yield roughly the
same number of measurements. While there are some outliers indicating that few measurements have not been
15https://github.com/ait-aecid/rootkit-detection-ebpf-time-trace/blob/main/ls-basic.c.
16https://github.com/ColinIanKing/stress-ng.
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Fig. 7. Number of events per probe across scenarios.

successfully retrieved from the ring buffer, the overall distributions suggest that most events have been collected
and all probes have been adequately captured. Third, event counts collected at probes of different functions
vary across scenarios. For example, increasing the number of files triggers more invocations of the filldir and
verify_dirent_name functions. Fourth, there are some differences in the number of events depending on whether
a rootkit is active or not, which explains the event counts stated in Table 2. The most significant divergence occurs
with the filldir function, which is reasonable since the rootkit injects a new function at the same position that
also invokes the original function, which increases the total number of collected measurements at that probe.
The latter observation implies that in our dataset the number of event counts can be used as a trivial way of

detecting rootkits. However, this is not necessarily the case in general since rootkits may be injected into the
kernel in many different ways (cf. Section 2.1.2); some of which do not trigger an additional function call. For
example, rootkits may substitute the targeted function entirely by replacing the kernel with a modified version
and forcing a reboot. Analysis of function timing is also capable of detecting changes within the code and is not
limited to function calls. In addition, while detection based on event counts fails if the specific function targeted by
the rootkit is not probed, timing-based detection is still able to recognize delays as long as the affected function is
invoked within the probed function, causing the entire runtime of the outer function to increase. Finally, function
timing is non-trivial to replicate for rootkits that try to mimic normal behavior in comparison to other features
collected from the kernel [25]. In the following, we therefore only focus on function timing for detection.

6.3.2 Delta Times. Based on the dataset of time measurements described in the previous section, we compute
two datasets of delta times using function-grouping and sequence-grouping following the strategies outlined
in Section 5.1. To visualize the delta times, we compute the median value of delta times for each pair of probes
in every batch and apply Principal Component Analysis (PCA). Figure 8 shows biplots of the first two
principal components for delta times computed using function-grouping (left) and sequence-grouping (right),
where symbols indicate the collection scenario (cf. Section 6.2.2) and color differentiates normal (blue) from
rootkit (red) batches. It is apparent in the left plot that many batches corresponding to rootkit behavior exhibit
increased delta times at probes iterate_dir-enter:iterate_dir-return, which is also the combination of probes we
depict for the default scenario in the left side of Figure 4. While this suggests that many of these batches can
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Fig. 8. Biplots of delta times computed via function-grouping (left) and sequence-grouping (right).

be correctly detected as outliers, it seems difficult to discern batches corresponding to different scenarios, with
the exception of the system load scenario where batches are far away from the others and both classes are well
separable. The plot on the right-hand side suggests that sequence-grouping performs better at separating batches
from different scenarios, with the exception of batches corresponding to the scenario where filename lengths are
varied that mostly overlap with batches from the default scenario. Contrary to the plot on the left-hand side,
however, rootkit batches are not as simple to separate from normal batches. In the following, we evaluate our
detection approach with both strategies and compare the results.

6.4 Results
This section presents the results of our evaluation. We first highlight that delta times are shifted at certain probes,
which indicates rootkit activity. We then apply our detection algorithm and evaluate its ability to detect rootkit
from normal activity given a training set of only normal data.

6.4.1 Delta Time Shifts. While the biplots presented in the previous section provide a rough indication about
the probes that are suitable to detect rootkits based on function timing, they do not communicate precise delays
and combine the influence of several probes. Moreover, while we only use the median for PCA, we aim to involve
multiple quantiles for detection (cf. Section 5.2). Inspired by the shift function that has been used to compare
which parts of distributions are shifted [16, 41], we subtract each quantile of delta times collected from rootkit
batches with those of normal batches. In the following, we always use nine quantiles (@ = 9) for our analyses and
detection evaluations.
Figure 9 depicts the differences of delta times for function-grouping as a boxplot, separated by probes and

scenarios. As visible in the plot, only the iterate_dir-enter:iterate_dir-return probes show a significant shift across
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Fig. 9. Delta time shifts for function-grouping.

all scenarios; other probes seem mostly unaffected by the influence of the rootkit. While the shifts spread over
a wide range, these results suggest that most of the batches collected during rootkit activity can be detected.
In contrast, Figure 10, which depicts the delta times computed with sequence-grouping, shows significantly
more diverse patterns. While there is hardly any shift noticeable at some probes in the middle of the plot and
some probes in the bottom of the plot show no obvious trends, the probes depicted in the top of the plot clearly
indicate shifted delta times. While some of them exhibit a rather high variation for certain scenarios, we find
that iterate_dir-enter:filldir64-enter and filldir64-return:filldir64-enter are good indicators as the shifts seem
relatively constant and have little variation across quantiles, batches, and scenarios. For this reason, we select
filldir64-return:filldir64-enter as an illustrative example to display time shifts on the right side of Figure 4. In the
following, however, we do not make any manual selections, but instead use the entirety of the data to leverage as
much information as possible and facilitate realistic evaluation.

6.4.2 Offline Detection. To evaluate our detection algorithm described in Section 5.2, we split the batches
of each of our two datasets of delta times into training and test datasets. As proposed in Section 6.3.1, we use
delta times of 50 normal batches for training and leave 100 remaining normal and 100 rootkit batches for testing.
We thereby pursue evaluation in an offline setting, i.e., sample the training data randomly from the normal
batches and repeat the sampling 100 times so that we are able to estimate the variance of our results. Note that
we evaluate the detection performance separately for every scenario, i.e., we sample the training data only for
normal data from one specific scenario and then evaluate detection using the test data of that scenario, and repeat
that for every scenario independently. The reason for this is that we do not assume that our normal behavior
model generated from data of one scenario is capable of differentiating normal and rootkit batches from another
scenario. We thus count true positives ()% ) as rootkit batches that are detected as anomalous by our approach,
false positives (�% ) as normal batches that are detected as anomalous, false negatives (�# ) as rootkit batches that
are not detected as anomalous, and true negatives ()# ) as normal batches that are not detected as anomalous. We
sum up all of these counts for every scenario and compute the true-positive rate or recall ()%' = '42 = )%

)%+�# ),
true-negative rate ()#' = )#

)#+�% ), precision (%A42 = )%
)%+�% ), accuracy (�22 = )%+)#

)%+)#+�%+�# ), and F1 score
(�1 = 2·%A42 ·'42

%A42+'42 ).
We fine-tune the detection threshold \ to maximize the F1 score, but notice that most p-values of rootkit

batches are truncated to 0, meaning that best results are achieved when the threshold is set to a very small but
non-zero value, such as 10−10. The left side of Figure 11 shows the confusion matrix for our detection results,
where we state the relative number of batches that end up in each cell. Note that due to the fact that each scenario

Digital Threats: Research and Practice, Vol. 6, No. 4, Article 33. Publication date: December 2025.



Rootkit Detection through Temporal Anomalies in Kernel Activity • 33:19

Fig. 10. Delta time shifts for sequence-grouping.

is evaluated separately and the prediction only differentiates between the normal and rootkit class but not the
scenario, it is necessary to consider the values for each scenario in the columns on its own. For example, the
top left corner of the matrix shows that all rootkit batches and 98.4% of all normal batches from the default
scenario have been correctly detected as such, while 1.7% of the normal batches have been incorrectly detected as
anomalous and thus contribute to the false-positive counts. For all other blocks in that column only the testing
data have been changed, e.g., the block directly below shows that all normal and rootkit batches of the file count
scenario are detected as anomalous. We leave these values in the confusion matrix for information, but emphasize
that they do not contribute to the metric counts. Interestingly, the default scenario seems to be suitable as training
data for the filename length scenario and vice versa. This confirms that filename lengths have virtually no impact
on delta times, which was already indicated by the right plot in Figure 8. Overall, function-grouping seems to be
suitable to correctly classify most of the batches. In comparison to that, the confusion matrix in the right side of
Figure 11 suggests that sequence-grouping is significantly more prone to false positives across all scenarios.

We compare the detection performance of our approach with two state-of-the-art methods for rootkit detection
based on event timings: One-class SVM [25] and Artificial Neural Networks (ANN) [26]. Due to the absence of
publicly available code in the original publications, we re-implement the approaches with some modifications to
make them suitable for our data and use-case. For the SVM, we construct features from each pair of probes, using
the median delta times as feature values, as illustrated in Figure 8. We then train a one-class SVM with a Radial
Basis Function kernel on normal training data and use the resulting model to compute anomaly scores on the test
data. These scores are optimized analogously to the p-values in our shift-based detection approach. For the ANN,
we follow the reasoning of Luckett et al. [26] and feed the delta times into the neural network without prior
quantile transformation as it should be able to handle complex data distributions. Contrary to their approach,
however, we pursue semi-supervised detection rather than supervised classification. Therefore, we randomly
sample half of the training data to train the model and subsequently use the remaining half to estimate center
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Fig. 11. Confusion matrices for function-grouping (left) and sequence-grouping (right).

Fig. 12. Comparison of evaluation results from detection approaches leveraging delta time shifts, Artificial Neural Networks
(ANN), and Support Vector Machines (SVM).

and spread of the normal model. This allows us to compute anomaly scores for the test data and optimize our
detection threshold. We refer to our open source repository for details on the implementations (cf. Section 1).

Figure 12 visualizes the evaluation metrics for all aforementioned approaches. For the case of function-grouping,
the detection approach based on delta time shifts proposed in this article achieves a median F1 score of 98.7% and
thus outperforms the approaches based on SVM (�1 = 97.1%) and ANN (�1 = 91.6%). It is thereby noteworthy
that detection based on delta time shifts yields perfect true-positive rates ()%' = 100%) for most iterations while
maintaining high true-negative rates ()#' = 97.6%). Considering the evaluation results for sequence-grouping,
the plot shows that detection based on delta time shifts (�1 = 94.6%) is roughly on par with SVM (�1 = 95.0%),
while ANN (�1 = 76.3%) is once more unable to keep up with the other two approaches. Overall, all approaches
evaluated on the sequence-grouping case yield lower detection metrics in comparison to function-grouping,
specifically due to low true-negative rates ()#') caused by many false positives. The main reason for this is that
normal and rootkit batches are more difficult to discern in the sequence-grouping case, as shown in Section 6.3.2.
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Fig. 13. Online detection of function-grouping (top) and sequence-grouping (bottom).

6.4.3 Online Detection. In realistic settings, it is usually non-trivial to ensure that training sets are free of
anomalies, because manual and forensic investigation of data for rootkit traces (or the absence thereof) is a
time-intensive task that requires specific domain knowledge. Moreover, it is usually not possible to assume that
batches of the same class and scenario are identically distributed over time, since real systems are affected by
concept drift and more recently collected batches usually represent the current system behavior better than ones
that have been collected some time ago. Accordingly, while the methodology presented in the previous section
is suitable to measure and compare detection capabilities for evaluation, real applications often require online
detection that enables incremental processing of batches.

In addition to offline detection, i.e., random selection of training data from normal batches as described in the
previous section, we conduct an experiment for online detection where data are processed chronologically and
only the most recent batches are used for training. To this end, we run a sliding window of sizeF = 50 over the
chronologically sorted batches and use them to predict whether the batch following just after that sequence of
batches corresponds to normal or rootkit behavior. We thereby leave the order of the batches unchanged from
the sorting displayed in Table 2, meaning that batches from each scenario are processed one after another and
normal batches of each scenario are processed first before switching to rootkit batches of the same scenario.

Figure 13 visualizes the p-values computed with the sliding window method for probes iterate_dir-enter:iter-
ate_dir-return using function-grouping (top) and probes filldir64-return:filldir64-enter using sequence-grouping
(bottom). In both plots, batches occurring after the switches from normal to rootkit batches and vice versa
receive low p-values since their delta values do not fit the distributions of delta values of the preceding batches.
These results indicate that rootkits are detected at the next probing point immediately after they become active.
Consequently, detection latencies are directly tied to the probing interval, which consists of the time taken for
collecting the time measurements from the kernel and computing the p-values, plus the arbitrarily defined delay
time in between. Assuming that rootkits can become active at any point in time, the average detection latency is
half of that interval.

Similar to the observations made in Section 6.4.2, sequence-grouping appears to suffer from more false positives
than function-grouping. To numerically assess the detection performance, we again need to count correct and
incorrect classifications. However, online detection with sliding windows implies that training data comprise both
normal and rootkit batches when the window passes over the point where these two classes meet. To account for
the fact that the model is unreliable in that case, we compute the evaluation metrics as follows. Positives are the
first normal and rootkit batches occurring just after the switching from one class to another. We count them as
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true positives ()% ) if they are detected as anomalous and false negatives (�# ) otherwise. Negatives are all batches
that occur after at least F batches from the same class have been processed to ensure that the predictions are
only counted when the model is trained with either normal or rootkit batches, but not a mix thereof. We count
them as false positives (�% ) if they are detected as anomalous and true negatives ()# ) otherwise. Combining
the p-values of all probes and computing the evaluation metrics using the equations stated in Section 6.4.2,
we obtain )%' = 100%, )#' = 97%, %A42 = 28.1%, �22 = 97%, and �1 = 43.9% for function-grouping and
)%' = 100%, )#' = 90.7%, %A42 = 11.3%, �22 = 90.8%, and �1 = 20.2% for sequence-grouping. This confirms
that function-grouping outperforms sequence-grouping across all metrics, which aligns with the results obtained
from offline evaluation.
We also apply the benchmark detection approaches based on SVM and ANN (cf. Section 6.4.2) in the online

setting for comparison. SVM yields )%' = 66.7%, )#' = 98.9%, %A42 = 42.9%, �22 = 98.6%, and �1 = 52.2% for
function-grouping and )%' = 77.8%, )#' = 95.7%, %A42 = 17.5%, �22 = 95.4%, and �1 = 28.6% for sequence-
grouping. Different from the evaluation in the offline case, SVM achieves higher F1 scores than our shift-based
detection approach for function-grouping and sequence-grouping, respectively. The main reason for this is
the higher precision (%A42). However, we point out that this improvement comes at the cost of a substantially
lower )%', meaning that several rootkit activities remained undetected. We make similar observations for ANN,
which yields )%' = 66.7%, )#' = 98.4%, %A42 = 33.3%, �22 = 98%, and �1 = 44.4% for function-grouping and
)%' = 44.4%, )#' = 99.9%, %A42 = 80%, �22 = 99.2%, and �1 = 57.1% for sequence-grouping. Even though
sequence-grouping outperforms function-grouping in terms of F1 score in this case,)%' reaches the lowest value
of all experiments with only 44.4%.

6.4.4 Impact on System Performance. In addition to detection metrics that have been evaluated in the previous
sections, it is important for real-world applications of detection systems that employed mechanisms only impose a
minimal and reasonable footprint on system resources to ensure scalability. Due to the fact that our approach relies
on ongoing probing of multiple kernel functions in certain intervals for online rootkit detection, it introduces
persistent computational overhead that should not be disregarded. Even though we emphasize that our approach
is primarily implemented as a proof-of-concept prototype for research purposes and has not been designed for
application in production environments, it can provide useful insights regarding the types of resources required
for such operations.

To assess the impact on system performance, we conduct an experiment where we monitor key system metrics
during probe injection and collection of delta times. Specifically, we select CPU and RAM utilization as well
as disk activity as the most relevant indicators. In our illustrative setup, we run our procedure to generate 10
normal batches of data as described in Section 6.2.1; this means that we execute 10 iterations with breaks of
10 seconds in between, where each iteration involves injection of probes into the kernel, execution of 100 “ls”
commands, polling of delta times from the ring buffer, and saving the collected datasets to disk. In addition, we
test a lightweight variant of this procedure including only 10 “ls” commands to determine the influence of this
parameter. During our experiment, we leave the system idle for 3 minutes before, after, and in between execution
of these two variants to ensure that the metrics are not affected by any background activities. The experiment is
conducted on a virtual machine with 4 vCPUs and 8 GB RAM.

Figure 14 visualizes the system performance metrics monitored throughout our experiment as timelines, where
the first shaded interval indicates the execution of the lightweight variant of our procedure and the second shaded
interval indicates the execution of the procedure in its default setting (cf. Section 6.2.1). In each interval, the CPU
usage peaks from 0% to roughly 25% 10 times corresponding to the 10 iterations of batch generation. At the same
time, RAM usage only increases from 2% to 3%. While CPU and RAM usage are mostly similar across the two
variants, the lightweight variant requires less disk activity in comparison to the default one. This stands to reason
since fewer executions of the “ls” command causes that kernel functions are called less frequently, which in turn
means that fewer delta times are captured and stored to disk.
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Fig. 14. System performance measurements depicting increased resource utilization when the probing mechanism is active
(shaded intervals).

We conclude from our experiment that our approach primarily affects CPU usage; RAM is hardly affected and
disk activity is less than 1 MB per batch. Given that our implementation is a research prototype rather than a tool
ready to be used in production environments, potential code optimizations could minimize the computational
cost of our probing mechanism. Other than that, we argue that smart timing of the execution of our procedure
could alleviate the impact on system performance. In particular, since probing only takes a few seconds, it could
take place when the system is idle and few computational resources are utilized at that time. We discuss these
ideas in more detail in the following section.

7 Discussion
Manipulation of directory listings is one of the main capabilities of most types of rootkits. Even when rootkits
target domains other than file hiding, they still need to interfere with file enumeration in order to hide themselves
from detection. This article demonstrates the detectability of such rootkits through measurement of time delays of
function calls within system calls. Thereby, these delays are caused by additional code that needs to be executed
when rootkits wrap around certain functions for file enumeration to hide their presence and other objects.
Accordingly, our approach is suitable to detect all types of rootkits that make use of system call wrapping for file
hiding, in particular, persistent and polymorphic rootkits.

Based on our insights gained from this work, we answer the research questions as follows: RQ1: What system
calls enable the observation of rootkits that hide files? Based on a review of existing open source rootkits and
specifically their methods to hide files, we found that among many system calls that may be affected by rootkits,
the getdents system call is the most relevant as it is the main interface to list file contents on Linux. Thereby,
we point out that rootkits do not necessarily have to target the entire system call but may also wrap around
some of its inner functions, such as filldir. RQ2: How can delays of relevant function calls be observed? Absolute
time measurements can be collected through injection of eBPF probes that attach to enter and return points of
functions within the kernel. Based on these measurements, delta times between any combination of probes can
be computed. For example, this allows to compute the time to execute entire functions (function-grouping) or
the time between two subsequently invoked functions (sequence-grouping). RQ3: To what degree can anomaly
detection techniques leverage system call function timings to uncover hidden rootkit activities? Our proof-of-concept
anomaly detection approach relies on statistical tests at certain quantiles of delta time distributions to recognize
time shifts in comparison to normal behavior models. The results of our evaluation suggest that this approach is
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able to detect rootkit activity with high accuracy; however, false positives have been noticed as a problem that
could limit practical applicability. In particular, system conditions have a significant influence on the delta times,
which could trigger many false positives in highly dynamic systems.

We foresee several ways to address the issue of negative influence of varying system conditions on the detection
accuracy. First, practical implementations of our detection method could make use of dynamic probing intervals
rather than regular intervals of 10 seconds used in our data generation procedure. In particular, the probing
mechanism could wait for the system to be in an idle state to reduce noise that affects execution times of functions
and interferes with time measurements. In addition, detected anomalies could trigger additional probing in short
intervals that allow to determine whether the observed shift of delta times is constant and persists over time
as it should be expected when a rootkit permanently wraps a function, or whether the currently processed
batch of time measurements should be considered an outlier and the system can be regarded as normal despite
an anomaly. Such an approach could also be used to assign confidence scores to predictions. Second, the time
measurements themselves could be made more robust by assigning high priorities to the probing mechanisms
so that other concurrent system processes do not interfere with the observed function call timings. Third, the
detection approach based on statistical testing could be replaced with more generic alternatives. In particular,
neural networks are well suited to ingest the complex and non-linear nature of delta time distributions and could
thus be used to assign anomaly scores to system states. Fourth, in comparison to our approach that uses only data
from a single scenario for training, other approaches could leverage data from multiple scenarios for training to
generate a single normal behavior model that enables classification of batches from any of these scenarios. As
visible in the right plot of Figure 8, delta times are sufficiently different across scenarios so that batches can be
first assigned a scenario through clustering with sequence-grouped delta times before carrying out detection
with function-grouped delta times. Thereby, our procedure of generating datasets could be extended with new
scenarios that introduce other forms of noise to obtain datasets with even more variation of normal behavior.
Alternatively, it is also possible to mix two or more existing scenarios so that multiple sources of noise occur
at the same time. We refer to the work by Singh et al. [37], who introduce noise by interacting with various
programs, such as browsers and benchmark tools. Fifth, in contrast to our semi-supervised approach, supervised
approaches could either make use of labeled instances of specific scenarios or even batches generated when
rootkits are active to further improve classification and detection performance.
Several modifications could be made to our rootkit to extend the evaluation. In addition to wrapping filldir,

the rootkit can alternatively wrap the entire getdents system call for file hiding. It could thus be interesting
to investigate to what degree the detection of these methods differ when it comes to detection. Moreover, the
rootkit does not only support file hiding, but also process hiding. After experimenting with both functionalities,
we noticed that there is no significant difference when it comes to detection, which is why we focused on the
simpler case of file hiding in this article. Finally, while the implementation of our approach is designed for and
evaluated on Linux machines, the concept of system calls is agnostic to operating systems. Therefore, our concept
of measuring low-level function timings for rootkit detection may be transferred to other operating systems,
such as Windows [3, 37].

8 Conclusion
This article presents a semi-supervised and anomaly-based approach that leverages statistical testing for rootkit
detection based on kernel function timings. The main idea behind this concept is that rootkits need to inject code
that modifies the outcome of specific kernel functions to hide their presence from users or detection programs,
which increases the runtime of these functions. To facilitate measurement of these time intervals, we present
a framework that injects probes into the kernel, attaches them to enter and return points of functions, and
polls timestamps for invocations of selected functions. Thereby, we found that the getdents system call and its
inner functions are of particular relevance as they are key to enable hiding capabilities of rootkits. We convert
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absolute time measurements into delta times using two strategies that focus on functions and sequential steps of
program workflows, respectively. Our analysis suggests that function-grouping has advantages when it comes
to the detection of shifted delta times, while sequence-grouping is superior when it comes to classification of
system states. We collect batches of delta times in five different scenarios using a custom rootkit and test our
detection approach in offline and online settings. The results of our evaluation indicate high detection accuracy
and leave many interesting research opportunities for future work, such as mechanisms for dynamic probing,
rootkit detection across different system states, and experiments with machine learning models other than
statistical tests.
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