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 a b s t r a c t

Log Anomaly Collaborative Intrusion Detection Systems (CIDS) are designed to detect suspicious activities and se-
curity breaches by analyzing log files using anomaly detection techniques while leveraging collaboration between 
multiple entities (e.g., different systems, organizations, or network nodes). Unlike traditional Intrusion Detec-
tion Systems (IDS) that require centralized algorithm updates and data aggregation, CIDS enable decentralized 
updates without extensive data exchange, improving efficacy, scalability, and compliance with regulatory con-
straints. Additionally, inter-detector communication helps to reduce the number of false positives. These systems 
are particularly useful in distributed environments, where individual system have limited visibility into potential 
threats. This paper reviews the current landscape of Log Anomaly CIDS and introduces an open-source framework 
designed to create benchmark datasets for evaluating system performance. We categorize log anomaly detectors 
into three categories: Sequential-wise, Embedding-wise, and Graph-wise. Furthermore, our open framework fa-
cilitates rigorous evaluation against different challenges identifying weaknesses in existing methods like Deeplog 
and enhancing model robustness.

1.  Introduction

Information and communication systems are increasingly growing in 
size and complexity while becoming more essential in our daily lives. 
As mentioned in [1], cyber attacks on these systems pose a substantial 
threat to society, consistently endangering them. Automating certain 
tasks, such as cybersecurity, is vital to keep up with this trend. This sub-
ject has been discussed before; 25 years ago, IBM released a manifesto 
[2] advocating for the development of self-managing systems that can 
autonomously configure, repair, and secure themselves. The core idea 
is that systems are evolving to a level of complexity that human main-
tenance is not feasible, thereby emphasizing the necessity of creating 
automated tools for these tasks. Over the past two decades, publications 
have addressed this topic. Early approaches to Collaborative Intrusion 
Detection Systems (CIDS) can trace back to 2003. For instance, [3] inves-
tigated CIDS to enhance intrusion detection across distributed systems. 
In 2012, [4] motivated their research in creating parsers capable of au-
tomatically processing logs to aid in the maintenance of large systems. 
Another example is from 2015, when LogCluster [5] was developed to 
autonomously detect system failures through log data analysis and was 
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implemented in Microsoft online services. The developers underscored 
the importance of such a tool, as these services generated petabytes of 
logs each day, an amount too vast for manual human analysis. In align-
ment with this thought process, our work will focus on current methods 
employed to automatically analyze logs to identify anomalous behav-
ior or intrusion attacks in decentralized systems known as Log Anomaly 
CIDS [6].

It is important to note that not all CIDS utilize logs [7] for anomaly 
detection, nor do all CIDS examine anomalous behavior. A more detailed 
discussion will be provided in the paper. While our primary focus is 
on Log Anomaly CIDS, we will also explore other Anomaly CIDS and 
comparable methods to obtain a broader understanding of the current 
state of the art and emerging trends. This paper revolves around the 
following research questions (RQ).

RQ1: What methods and baselines are used in the literature for 
Anomaly CIDS? We will explore different methods to detect anoma-
lies in CIDS from recent years. As noted previously, not all Anomaly 
CIDS rely solely on logs; some utilize network traffic packets or diverse 
time series outputs from multiple sensors. To broaden our investigation, 
we will also consider Intrusion Detection Systems (IDS), which function 
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Fig. 1. The literature review distinguishes between publications that introduce new Intrusion Detection Systems (IDS) and Collaborative Intrusion Detection Systems 
(CIDS) methods on the upper section and those identified via Log Anomaly Detection (LAD) on the lower section. Each method is color-coded to indicate the presence 
of specific keywords and the type of machine learning architecture employed. All the publications are sorted in chronological order.

similarly to CIDS but focus on centralized systems. Furthermore, we will 
examine Log Anomaly Detection (LAD) approaches, which involve algo-
rithms that scan logs to identify unusual behavior in a similar way as 
Log Anomaly CIDS. Fig. 1 illustrates all the publications referenced in 
this study, all the methods considered are machine learning based. We 
compile the articles by employing the snowball technique on Google 
Scholar, utilizing the previously specified keywords.

RQ2: How can we categorize the different Log Anomaly CIDS 
and other Log Anomaly approaches? We will organize our classifica-
tion based on all the logging methods collected in RQ1. Other studies, 
such as [8] or [9], often categorize methods according to the architec-
ture of the machine learning model. Although this aspect has signifi-
cance, we believe that it is not the most crucial element. Since machine 
learning models are data-driven algorithms that depend on an optimiza-
tion process, our categorization will emphasize data pre-processing tech-
niques and the objective functions employed during training.

RQ3: To what extent can we improve the reliability of Log 
Anomaly CIDS? To effectively create and deploy these systems in prac-
tical environments, it is crucial to ensure their robustness. We have 
created an open-source framework intended to produce well-organized 
datasets, enabling preliminary assessment of these techniques in diverse 
contexts. Our main objective is to provide tools to allow for a thor-
ough analysis that support the creation and evaluation of more sophis-
ticated and robust algorithms in this domain. Although this study will 
not definitively resolve RQ3, it will provide tools to address it in future 
research.

The corresponding code is available for access here [10].
The paper is organized into these sections: In Section 2, a comparison 

with prior studies on the same subject is presented. Section 3 introduces 
the concept of a CIDS and examines how multiple nodes can collaborate 
for intrusion detection in decentralized systems. Section 4 evaluates cur-
rent state-of-the-art trends to address RQ1. In Section 5, we analyze the 
log processing in Log Anomaly CIDS and categorize them, focusing on 
RQ2. Section 6 discusses existing benchmarks and shows how our open-
source framework addresses RQ3. Section 7 includes a demonstration of 
how our framework can be used to compare different models. Section 8 
answers the research questions based on insights from previous sections. 
Finally, Section 9 covers conclusions and future work.

2.  Related work

The literature includes several SoK papers and surveys focused on 
CIDS, such as those on Log Anomaly CIDS. In addition, there are nu-
merous surveys that discuss Log Anomaly methods in more general. We 
have classified these into distinct categories on the basis of their content.

• CIDS Taxonomies: The extensive topic of CIDS allows multiple tax-
onomies to be formulated depending on which CIDS aspect is being 
emphasized. The 2015 work by [11] offers a CIDS classification that 
is broader than what is used in this paper, with less emphasis on 
specific algorithms, but a stronger focus on commercial variants. In 
contrast, [8] highlights the role of federated learning in CIDS and 
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presents various concepts at a more introductory level, lacking com-
prehensive technical details.

• IDS Surveys: Intrusion detection systems (IDSs) are generally divided 
into two primary categories, as we will discuss later. In the survey by 
[12], these are further broken down into several subclasses. Further-
more, [13] enumerates different tactics used to avoid IDS detection.

• SoK Publications: The work of [6] provides an extensive overview of 
the entire detection system pipeline. However, their primary concern 
is about reducing the volume of logs processed by the CIDS, which 
diverges from the focuses of this study.

• Log Anomaly Surveys: The study by [9] thoroughly investigates var-
ious deep learning methods to detect log anomalies, although it re-
mains theoretical and does not incorporate IDS practically. Similarly, 
[14] discusses different strategies, concentrating mainly on the clus-
tering of different logs.
Our research enhances prior studies in Log Anomaly CIDS by offer-

ing a more detailed categorization of prevalent algorithms. In addition, 
we introduce innovative tools, such as our framework, to support the 
development of these systems. We assert that the perspective offered in 
this paper is distinctive and has not previously been addressed in the 
existing literature.

3.  Anomaly CIDS

Anomaly CIDS covers an extensive and cross-disciplinary topic. Ini-
tially, this section will clarify the concept of an IDS before diving into 
multiple CIDS and highlighting their advantages over IDS in complex 
environments. We define Anomaly CIDS as those designed to recognize 
anomalies, and Log Anomaly CIDS specifically as those that utilize log 
inputs for anomaly detection. Ultimately, we will explore the prevalent 
trends within the reviewed literature for this study. This section aims 
to provide a thorough overview that extends beyond just Log Anomaly 
CIDS, whereas the subsequent sections will focus on examining the al-
gorithms used for detecting log-based anomalies.

3.1.  Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDSs) were created to facilitate auto-
mated protection of systems against threats. Their primary role is to 
recognize attacks through the examination of data generated by the sys-
tem. IDSs are integrated into a broader framework for analyzing and 
evaluating the behavior of the entire infrastructure. Based on the re-
search presented in [6], Fig. 2 illustrates a standard pipeline designed 
to collect and analyze logs in multiple IDS algorithms. Similar pipelines 
can be found in LogLens [7] and in CIDS approaches [3]. The primary 
functions are as follows. First, there is the capture layer, whose funda-
mental role is to gather logs from the system’s various nodes. Next, the 
reduction layer processes these logs; as highlighted in [5], the volume of 
logs can be excessive, so the critical function of this layer is to sort and 
eliminate redundant logs to reduce the burden on the subsequent layer. 
However, determining which logs are redundant can be complex and 
poor decisions could negatively influence IDS performance. This issue 
is beyond the scope of this document; more comprehensive details are 
provided in [6]. Following this, the infrastructure layer is responsible for 
the storage of the various logs. Finally, at the peak of the diagram, the 
detection and investigation layers are found. The detection element is 
automatically managed by IDS techniques, while the investigation layer 
offers users a platform to track alerts and oversee the system. An ac-
tual example of an open source initiative that follows this architecture 
is documented in [15].

As mentioned above, the detection layer enables multiple IDSs to col-
laborate. The literature identifies various types of IDSs. Signature-based 
methods excel at identifying known threats, but maintaining their cur-
rency is both burdensome and labor-intensive. In addition, they fail to 
detect unknown threats and can be easily bypassed by sophisticated ad-
versaries such as advanced persistent threats (APTs). On the other hand, 

Fig. 2. Generic alert system architecture based on the previous work of [6] and 
[16].

anomaly-based IDSs identify deviations from typical system and user 
behaviors, allowing them to detect zero-day attacks. However, they are 
prone to generate excessive alerts through false positives and duplicates, 
which requires alert aggregation strategies to minimize the number of 
alerts presented to users [16].

3.2.  Collaborative IDS (CIDS)

As technologies like the Internet of Things (IoT) expand, informa-
tion and communication systems have evolved to be more intricate and 
decentralized. Consider a typical fog architecture as described in [17], 
which includes three main layers for distributed computation as shown 
in Fig. 3. First, the IoT layer is primarily used to collect data from sensors 
in various locations. Second, the fog layer serves as the connecting ele-
ment of the overall system. Third, the cloud layer hosts the nodes with 

Fig. 3. The foundational fog architecture as described in [17] comprises K 
Cloud nodes, M fog servers, and N IoT devices. The numbering system organizes 
the layers from those nearest to those farthest from the user’s view, assuming 
interaction with the IoT devices.
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the highest computational capacity. This fog architecture can operate 
on multiple devices located in various global locations. Such a decen-
tralized system does not integrate well with a centralized IDS, which 
may encounter issues like scalability or latency. CIDS were developed 
to address these challenges. These systems comprise two components: 
monitor nodes and analysis nodes. For simplicity, it is assumed that the 
capture layer resides in the monitor nodes, while the remaining layers 
are located on the other ones. According to [11], CIDS can be catego-
rized into three types:

• Centralized CIDS: Their operation is similar to regular IDS, as they 
incorporate just one analysis node. Nevertheless, for scalability, they 
possess numerous monitoring nodes distributed across the system.

• Decentralized CIDS: The system employs a hierarchical configura-
tion among the analysis nodes, with each monitoring node linked to 
a particular analysis node.

• Distributed CIDS: Generally, it employs a Peer-2-Peer structure 
where each node simultaneously performs analysis and monitoring.
Centralized CIDS are susceptible to failure due to their single point 

of vulnerability and do not scale as efficiently as other methods. Conse-
quently, this study will not focus on centralized CIDS, as existing liter-
ature on Log Anomaly CIDS assumes that multiple analysis nodes come 
into play.

Decentralized systems are generally more challenging to develop 
and maintain than centralized systems, introducing unique obstacles for 
CIDS that IDS do not encounter. These systems depend on message ex-
changes between various nodes, posing a risk of interception or alter-
ation by attackers. Additionally, when updates are made to the detec-
tion methods utilized in CIDS, not all nodes may be accessible, leading 
to nodes running different software versions. As highlighted in [8], a 
significant number of such methods in current research employ the Fe-
dAvg [18] algorithm for model training. The Pseudo-code Algorithm 1 
describes a generic algorithm for this approach. Initially, it involves sam-
pling 𝑁 clients (Line 3). If the connection to a node in the sample using 
the 𝑛𝑜𝑡_𝑓𝑎𝑖𝑙() method is successful (line 4), the node is instructed to per-
form local training and return its local weights (Lines 5-6). These local 
weights are then merged through an aggregation process (Line 9). Fi-
nally, all available nodes are updated with the new global weights (Line 
12). It is important to note that it is unnecessary for all nodes to par-
ticipate in the training process, but the final model must be updated 
for all accessible nodes. In FedAvg, the aggregation function calculates 
a weighted average of the weights. The literature presents alternative 
aggregation techniques Fed+ [19] as well as modifications to FedAvg, 
such as DDFef [20]. As noted above, adversaries can intercept messages 
sent during the federated learning training process. This can alter the 
final model’s performance and potentially create weaknesses in detec-
tion systems that can be exploited. Related literature on these types of 
attack is cited as [21–23].

As revealed in the survey by Zhang et al. [24], FedAvg is used in 
various disciplines. It is a fundamental training technique in federated 
deep learning with proof of convergence [25]. A key challenge in CIDS 
applications is the prohibition against transferring data to a central lo-
cation due to privacy concerns. However, training techniques such as 
FedAvg eliminate this need, allowing each node to leverage the training 
data from other nodes effectively. In an empirical study conducted by 
Rahman et al. [26], three use cases were assessed by comparing fed-
erated with centralized CIDS, demonstrating that federated outcomes 
can closely approximate centralized performance depending on the data 
distribution among nodes, although typically results tend to be infe-
rior. Campos et al. [27] conducted a similar study, evaluating FedAvg 
and Fed+ [19] in various dataset distributions, highlighting the criti-
cal role of data distribution and showing that Fed+ generally outper-
forms FedAvg. Communication costs can be further reduced in training 
by adapting FedAvg variations such as LotteryFL [28], which involves 
only transmitting a subset of the model to the central hub according to 
the hypothesis of the lottery ticket [29], exemplified in FedLog [30], 

Algorithm 1 Federated learning generic pseudo-code.
1: for 𝑟𝑜𝑢𝑛𝑑 in 𝑟𝑜𝑢𝑛𝑑𝑠 do
2:  𝑊 𝑠𝑡 ← [] ⊳ List of trainable weights
3:  for 𝑛 in 𝑠𝑎𝑚𝑝𝑙𝑒_𝑛𝑜𝑑𝑒𝑠(𝑁) do ⊳ Sample N clients 
4:  if 𝑛.not_fail() then 
5:  𝑛.do_train(local_epochs) 
6:  𝑊 𝑠𝑡.append(n.get_weights()) 
7:  end if
8:  end for
9:  𝑊𝑡+1 ← aggregate_weights(𝑊 𝑠𝑡) 
10:  for 𝑛 in 𝑁𝑜𝑑𝑒𝑠 do
11:  if 𝑛.not_fail() then
12:  n.set_weights(𝑊𝑡+1) 
13:  end if
14:  end for
15: end for

a Log Anomaly CIDS. Another example is AMCNN-LSTM [31], where 
compressed gradients are transmitted instead of model weights.

4.  Literature discussion

As depicted in Fig. 1, this research investigates scholarly articles 
using the keywords Log Anomaly Detection (LAD) and Intrusion Detec-
tion Systems (IDS). This section will highlight the unique traits of these 
two fields. Our approach used the snowball methodology. We started 
by conducting a search on Google Scholar for articles with more than 
300 citations dated between 2020 and 2024, or recent works that may 
capture the interest of the field. After accumulating a set of approxi-
mately 7 papers, we examined the citations listed in their related work 
sections. Those citations deemed essential were included if they formed 
the foundation for the authors’ work, were used in their experiments, 
or appeared multiple times, specifically more than three, in various re-
lated studies. This approach was repeated until no additional relevant 
papers could be found. Articles were considered pertinent and included 
only if they demonstrated innovative methods that set them apart from 
others. If the method appeared irrelevant or unrelated to the topic, it 
was excluded. Furthermore, we included some papers due to their com-
pelling empirical experiments [26] or interesting use cases [32]. LAD 
is primarily focused on identifying anomalies in log data, which can 
originate from both system malfunctions and cyber attacks. In contrast, 
works related to CIDS/IDS generally concentrate solely on anomalies 
caused by attacks within various data contexts. It should be noted that 
methods from these fields can often be used interchangeably, as illus-
trated by [33], where an LAD method [34] was applied within a CIDS 
setting. Table 1 lists the three types of dataset used:

• Log Datasets: datasets derived from the system’s generated logs.
• Network traffic Datasets: datasets that examine the transmission of 
packages across a network. Most of these fields consist of numerical 
values such as byte size, sending time, and others.

• Time series: numerical sequences over time observed in various in-
dustrial contexts.

Table 1 
Datasets found in the literature.
 Datasets Publications

 Log HDFS [40], BGL [41], Thunderbird [41], Hadoop [42], Open-
Stack [42], Rubis [43], Spirit [41], Spark [44] , AIT-LDS [45]

 Network traffic NSL-KDD [46], Bot-IoT [47], KDD99 [48], SWaT [49], WADI 
[49], UNSW-NB15 [50], TONi_IoT [51], Car Hacking [52]

 Time series Space Shuttle [53], Respiration [53], ECG [53], Power de-
mand [53], Gesture [53] Gas pipeline [54], Nyc taxi [55]
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Fig. 4. Distribution of different datasets used in the literature related to publi-
cations on Log Anomaly Detection (LAD) and Intrusion Detection Systems (IDS).

Two additional datasets identified in the literature but not within 
these groups include the SEA dataset [35], which is derived from vari-
ous UNIX commands and employed in [36], and MIMIC [37], a dataset 
concerning critical care utilized by [38]. Fig. 4 illustrates the distribu-
tion across multiple datasets referenced in the literature. Examining LAD 
among log datasets reveals that HDFS, BGL, and Thunderbird serve as 
primary baselines in numerous studies. Conversely, CIDS/IDS research 
is fragmented across different clusters, lacking a predominant baseline 
dataset, which complicates comparative analysis between methodolo-
gies. Notably, only two IDS methodologies are equipped to identify log 
anomalies [30,39], indicating a distinct deficit in CIDS/IDS solutions 
for log data. Studies that created their own datasets merely as a concept 
to showcase their specific method’s performance were excluded from 
Table 1 and Fig. 4.

Fig. 5. Distribution of primary keywords in the literature related to publications 
on Log Anomaly Detection (LAD) and Intrusion Detection Systems (IDS).

We further explore the different methodologies cited in the litera-
ture (refer to Fig. 5), highlighting a divergence between how LAD and 
CIDS/IDS publications are distributed. LAD techniques employ contem-
porary Natural Language Processing models, such as transformers and 
Large Language Models, in addition to methods based on graph theory. 
Conversely, CIDS/IDS approaches tend to opt for broader deep learning 
techniques. This pattern is largely due to two reasons: first, as mentioned 
earlier, most CIDS/IDS research does not center on log datasets, lessen-
ing the demand for NLP methods; second, nonlog datasets are generally 
more straightforward, allowing techniques like Full Neural Networks 
(FNNs) to achieve strong results. The methodologies compared are de-
tailed in Tables 2 and 3.

5.  Log Anomaly Detection

In the preceding section, we have generally examined various 
Anomaly CIDS / IDS systems without diving into the specific techniques 
applicable to them. In the upcoming segment, we will offer a concise in-
troduction to logs and explore the different strategies employed by mul-
tiple Log Anomaly Detection methods, as documented in the literature.

5.1.  Logs and log events

A log is made up of two main elements: a fixed section and a variable 
section. The fixed portion functions as the template for the log message, 
while the variable part includes a set of values that change according to 
the state of execution. For example:
log = “Connection to 127.0.0.1 was accepted”. (1)

The process involves separating the logs into two parts, 𝑙𝑜𝑔 = (𝑡, 𝑣), 
where 𝑡 represents the template and 𝑣 corresponds to the variable list. In 
many real-world situations, templates are not accessible. Consequently, 
logs are managed as string variables instead of tuples. Several parsers 
have been created to address this issue, as noted in the literature: [4,90,
91]. These parsers can be described by Eq. (2).
𝑒, (𝑡, 𝑣) = 𝑝𝑎𝑟𝑠𝑒𝑟(𝑙𝑜𝑔) (2)

Where t = “Connection to <*>was<*>” and 𝑣 = [127.0.0.1,
accepted]. These approaches produce the most probable template and 
assign it an event number, also known as a log event 𝑒. It is important 
to recognize that the parsers are not infallible and cannot ensure that 
(𝑡∗, 𝑉 ∗) == (𝑡, 𝑉 ) where (𝑡∗, 𝑉 ∗) is the accurate result. For example, when 
using one of the common parsing methods, such as Drain [90], subse-
quent logs associated with the same initial template might be mistakenly 
classified under a different template and event number:
𝑙𝑜𝑔1 = “The operation was: successful” ,
𝑙𝑜𝑔2 = “The operation was: Exception in line 25,...”.

(3)

This occurs because Drain initially segments the logs based on word 
count, ensuring that they are not assigned the same event ID, even if 
they originate from an identical template. In this paper, we will not 
investigate into further specifics regarding the parsers. Nonetheless, it 
is essential to grasp the following attributes before transitioning to Log 
Anomaly Detection techniques:

• Parsers are not flawless; any mistakes they produce will be trans-
ferred to the Log Anomaly Detection methods that depend on them.

• Parsers such as Drain [90] and Spell [91] are updated in real time, 
implying that they undergo continuous modifications. This poses a 
challenge for Log Anomaly Detection methods that are updated in a 
non-continuous manner, including deep learning techniques.

It should be noted that new parsers that employ LLM techniques are 
in development and have the potential to significantly reduce parsing 
errors [83,92].
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Table 2 
Collaborative and Intrusion Detection Systems publications.
Method Keywords Architecture Dataset

FL-LSTM [36] Semi/supervised, Federated RNN Sea
MCPS FNN [38] Semi/supervised, Federated FNN MIMIC
Multi-Chain AE [56] Unsupervised, Federated CNN Created
DÏoT [39] Parser, Unsupervised, Federated RNN Created
VLSTM [57] Semi/supervised RNN UNSW-NB15
DeepFeed [58] Semi/supervised, Federated CNN, RNN Gas Pipeline
FIDS [59] Semi/supervised, Federated FNN NSL-KDD
AMCNN-LSTM [31] Unsupervised, Federated CNN, RNN Space shuttle, Power demand, Engine
VAE-LSTM [60] Unsupervised, Federated CNN, RNN Space shuttle, Respiration, Gesture, Nyc taxi, ECG, 

Power demand, Gas Pipeline
FSL-SCNN [61] Unsupervised CNN Created, UNSW-NB15
HS-TCN [62] Parser, Semi/supervised CNN Created
FID-GAN [63] Unsupervised FNN, GAN NSL-KDD, SWaT, WADI
VANET-BiGAN [64] Unsupervised, Federated FNN, GAN KDD99
Lockedge [65] Semi/supervised, Federated FNN Bot-IoT
FED-IDS [32] Semi/supervised, Federated Transformer TON_IoT, CarHacking
FeLIDS [66] Semi/supervised, Federated CNN, FNN CSE-CIC-IDS2018, MQTset, InSDN
FedLog [30] Parser, Semi/supervised, Federated CNN HDFS, BGL

Table 3 
Log Anomaly Detection.
   Method Keywords Architecture Dataset  
 DeepLog [34] Parser, Unsupervised RNN HDFS, Openstack  
 CNN [67] Parser, Semi/supervised RNN HDFS  
 LogAnomaly [68] Parser, Unsupervised RNN HDFS, BGL  
 LogRobust [69] Parser, Semi/supervised RNN HDFS  
 LogTransfer [70] Parser, Unsupervised RNN HDFS, Hadoop, Created  
 OC4Seq [71] Parser, Unsupervised RNN HDFS, BGL, Rubis  
 LogBert [72] Parser, Unsupervised Transformer HDFS, BGL, Thunderbird  
 NeuralLog [73] Semi/supervised, LLM Transformer HDFS, BGL, Thuderbird, Spirit  
 LogFlash [74] Parser, Unsupervised, Graph - Created  
 PLELog [75] Parser, Semi/supervised CNN HDFS, BGL  
 DeepTraLog [76] Parser, Unsupervised, Graph GNN Created  
 LogGD [77] Parser, Semi/supervised, LLM, Graph Transformer, GNN HDFS, BGL, Thunderbird, Spirit  
 TransLog [78] Parser, Semi/supervised Transformer HDFS, Hadoop, Thunderbird  
 GLAD [79] Parser, Unsupervised, Graph Transformer, GNN BGL, AIT, Created  
 LogGT [80] Parser, Semi/supervised, Graph, LLM Transformer, GNN HDFS, BGL, Thunderbird  
 LogBD [81] Parser, Unsupervised, LLM CNN, Transformer Hadoop, Thunderbird  
 LogSD [82] Parser, Semi/supervised CNN HDFS, BGL, Spirit  
 PreLog [83] Semi/supervised, LLM Transformer HDFS, BGL, Spark  
 LogPromt [84] Semi/supervised, LLM Transformer BGL, Spirit  
 SuperLog [85] Semi/supervised, LLM Transformer BGL, Spirit  
 LogGPT [86] Parser, Unsupervised, LLM Transformer HDFS, BGL, Thunderbird  
 LogLLaMA [87] Parser, Unsupervised, LLM Transformer HDFS, BGL, Thunderbird  
 LogTAD [88] Unsupervised RNN BGL, Thunderbird  
 MetaLog [89] Paser, Unsupervised RNN HDFS, BGL, Thunderbird, Openstack  

5.2.  Methods

After reviewing the different publications relevant to Log Anomaly 
CIDS/IDS and LAD, we classified the methods into three separate groups. 
In the following parts, we will describe the different categories using 
pseudo-codes and process tables with an example of an anomaly se-
quence as aids.

5.2.1.  Sequential-wise Log Anomaly Detection
To the best of our knowledge, this category was the first of its kind 

in the literature and is still used today (Algorithm 2). The core concept 
involves converting each log entry into an event ID according to Eq. (2) 
(Line 5). If an event was not included in the training set, it is deemed 
anomalous (Line 6); otherwise, the events are combined into an event 
sequence, which is then processed by a model to determine if it is a 
normal sequence (Lines 12-13). Table 4 presents an example illustrating 
the various outputs produced at each step. The first iterations of this 
method can be traced back to publications from the previous century 
[93]. In the realm of literature, Deeplog [34] is noteworthy as the first 
deep learning model in this category, employing an LSTM [94] with the 

subsequent formulation:

𝐿𝑜𝑠𝑠 = −𝑙𝑜𝑔(𝑃𝜃(𝑒𝑡 ∣ 𝑒𝑡−1, 𝑒𝑡−2,… , 𝑒0)). (4)

Algorithm 2 Sequential-wise Log Anomaly Detection generic pseudo-
code.
1: 𝑚𝑜𝑑𝑒𝑙 ← load_model() ⊳ Machine learning model
2: 𝑙𝑜𝑔𝑠 ← [𝑙𝑜𝑔1, 𝑙𝑜𝑔2, .., 𝑙𝑜𝑔𝑛] ⊳ Input log sequence
3: 𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞 ← []
4: for 𝑙𝑜𝑔 in 𝑙𝑜𝑔𝑠 do
5:  𝑒, _← parser(𝑙𝑜𝑔) ⊳ 𝑒 ∈ 𝐸𝑣𝑒𝑛𝑡𝑠
6:  if 𝑒 ∉ 𝑘𝑛𝑜𝑤_𝑒𝑣𝑒𝑛𝑡𝑠 then 
7:  return True
8:  end if
9:  𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞.append(𝑒)
10: end for
11: 𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞 ← preprocessing(𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞) ⊳ 𝐸𝑣𝑒𝑛𝑡𝑠𝑛𝑥1 → ℝ𝑛𝑥𝑚

12: 𝑜𝑢𝑡𝑝𝑢𝑡 ← model(𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞) ⊳ ℝ𝑛𝑥𝑚 → ℝ𝑛𝑥𝑜

13: return is_anomaly(𝑜𝑢𝑡𝑝𝑢𝑡) ⊳ ℝ𝑛𝑥𝑜 → {𝑇 𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}
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Table 4 
Example of the intermediate outputs of the steps 
in the Sequential-wise methods following Algo-
rithm 2.
 Step  Sub-Method (optional)  Output
 Input 𝑙𝑜𝑔1, 𝑙𝑜𝑔2, 𝑙𝑜𝑔3
 For loop  parser(𝑙𝑜𝑔1) 𝑒1

 parser(𝑙𝑜𝑔2) 𝑒2
 parser(𝑙𝑜𝑔3) 𝑒3

 Event Seq.  [𝑒1, 𝑒2, 𝑒3]
 Preprocessing  [([𝑒1, 𝑒2], 𝑒3)]
 Model  [𝑠𝑐𝑜𝑟𝑒1]
 Is Anomaly  [True]

The model 𝑃𝜃 is trained to forecast the subsequent event in the se-
quence based on prior events. A comparable approach was employed in 
LogBert [72], which utilized a transformer [95] with BERT [96] mask-
ing loss alongside the Deep SVDD hypersphere loss [97]:
𝐿𝑜𝑠𝑠 = −𝑙𝑜𝑔(𝑃𝜃(𝑒 ∈ 𝑀 ∣ 𝑒 ∉ 𝑀)) + 𝛼𝐿𝑆𝑉 𝐷𝐷, (5)

where:

𝐿𝑆𝑉 𝐷𝐷 = ||ℎ𝐷𝐼𝑆𝑇 − 𝑐||2. (6)

Here, 𝑀 refers to the collection of events that are masked and meant 
to be predicted using the observable events. Meanwhile, ℎ𝐷𝐼𝑆𝑇  denotes 
the embedding space of a special token, encapsulating the information 
of the sequence, and 𝑐 is the mean of ℎ𝐷𝐼𝑆𝑇  across all sequences within 
the training batch. The authors assert that incorporating both losses im-
proves performance, and the masking loss is more effective than Eq. (4) 
for handling log data. Similarly to Eqs. (4) and (5), various models 
have been developed. LogAnomaly [68], for example, expands on the 
DeepLog framework with a template2Doc method to improve seman-
tic retrieval. Similarly, LogTransfer [70] is designed to enable knowl-
edge transfer across different datasets, while OC4Seq [71] combines 
two GRUs with SVDD hypersphere loss. In the realm of CIDS, DÏoT [39] 
utilizes a GRU [98] instead of an LSTM, and FedLog [30] employs a 
dual-input model, applying unique pre-processing techniques for each 
input. Furthermore, there are semi-supervised approaches like PLELog 
[75], which uses a probabilistic label estimation method, and LogSD 
[82] that incorporates distillation techniques with a framework featur-
ing two encoders and a single decoder.

5.2.2.  Embedding-wise Log Anomaly Detection
Sequential-wise anomaly detection techniques for logs are straight-

forward to implement, but present several challenges that embedding-
based approaches aim to tackle (Pseudo-code 3). Firstly, Sequential-wise 
methods neglect the information contained within the log messages and 
heavily rely on parsers. Moreover, the introduction of new or altered 
logs from system updates can dramatically affect the model’s perfor-
mance. Studies such as LogRobust [69] seek to mitigate these shortcom-
ings in anomaly detection. They achieve this by forgoing the use of event 
ID numbers and, instead, utilizing the templates obtained by the parsers 

Table 5 
Example of the intermediate outputs of the steps in the 
Embedding-wise methods following Algorithm 3.
    Step  Sub-Method (optional)  Output 
  Input 𝑙𝑜𝑔1, 𝑙𝑜𝑔2, 𝑙𝑜𝑔3
  For loop  parser(𝑙𝑜𝑔1) 𝑡1  
  parser(𝑙𝑜𝑔2) 𝑡2  
  parser(𝑙𝑜𝑔3) 𝑡3  
  Event Seq.  [𝑡1, 𝑡2, 𝑡3]
  Emb. Model  [𝑒𝑚𝑏1, 𝑒𝑚𝑏2, 𝑒𝑚𝑏3]
  Model  [𝑠𝑐𝑜𝑟𝑒1]
  Is Anomaly  [True]

(Line 6) as model input. This is accomplished through a word embed-
ding layer (Line 9) known as FastText [99], which translates template 
words into an embedding space. Subsequently, a BiLSTM is employed 
to process the information, with the primary formulation being:
𝐿𝑜𝑠𝑠 = −𝑙𝑜𝑔(𝑃𝜃(𝑦 ∣ 𝐸𝜑(𝑡𝑛), 𝐸𝜑(𝑡𝑛−1),… , 𝐸𝜑(𝑡0))) (7)

where:

𝐸𝜑(𝑡) =
𝑤𝑜𝑟𝑑∈𝑡
∑

𝑤𝑜𝑟𝑑
idf(𝑤𝑜𝑟𝑑) ⋅ FastText𝜑(𝑤𝑜𝑟𝑑). (8)

We refer to 𝐸𝜑(⋅) as the embedding encoder. Table 5 provides an 
illustration of the various steps involved in this approach. Typically, 
in many studies, this encoder originates from a pre-existing model 
with pretrained parameters, and during training, these parameters 𝜑 re-
main unaltered. Regrettably, the majority of the techniques adhering to
Algorithm 3 are supervised, which constrains their application as an 
IDS element for identifying novel attacks, as indicated in Eq. (7). Anal-
ogous research like NeuralLog [73] operates without a parser and en-
codes logs using a pre-trained Bert model [96], whereas PreLog [83] 
is a large language model (LLM) trained on log data, capable of iden-
tifying supervised log anomalies through tailored prompts. Similar
prompt-based LLM methods involve LogPrompt [84] and SuperLog [85]. 
Alternatively, some strategies use LLMs integrated with reinforcement 
learning for fine-tuning instead of relying on prompts, as seen in recent 
examples like LogGPT [86] and LogLLaMA [87]. Other approaches that 
do not precisely follow this pattern but fit within the same category in-
clude the method widely referenced as “CNN” in the academic literature 
[67], which utilizes a trainable embedding layer alongside a basic CNN 
framework [100].

Algorithm 3 Embedding-wise Log Anomaly Detection generic pseudo-
code.
1: 𝑚𝑜𝑑𝑒𝑙 ← load_model() ⊳ Machine learning model
2: 𝑒𝑚𝑏_𝑚𝑜𝑑𝑒𝑙 ← load_emb_model() ⊳ Embedding model
3: 𝑙𝑜𝑔𝑠 ← [𝑙𝑜𝑔1, 𝑙𝑜𝑔2, .., 𝑙𝑜𝑔𝑛] ⊳ Input log sequence
4: 𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞 ← []
5: for 𝑙𝑜𝑔 in 𝑙𝑜𝑔𝑠 do
6:  _, (𝑡, _) ← parser(𝑙𝑜𝑔) ⊳ 𝑡 ∈ 𝑇 𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠
7:  𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞.append(𝑡)
8: end for
9: 𝑒𝑚𝑏_𝑠𝑒𝑞 ← emb_model(tokenizer(𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞)) ⊳

𝑇 𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠𝑛𝑥1 → ℝ𝑛𝑥𝑚

10: 𝑜𝑢𝑡𝑝𝑢𝑡 ← model(𝑒𝑚𝑏_𝑠𝑒𝑞) ⊳ ℝ𝑛𝑥𝑚 → ℝ𝑛𝑥𝑜

11: return is_anomaly(𝑜𝑢𝑡𝑝𝑢𝑡) ⊳ ℝ𝑛𝑥𝑜 → {𝑇 𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}

An alternative method, LogBD [81], uses domain adaptation be-
tween a target and a source dataset, integrates a Bert encoder [96], and 
is trained without supervision using SVDD hypersphere loss (Eq. (6)). It 
employs adversarial training, applying gradient reversal [101], to medi-
ate between the target and source datasets and help the generalization 
of the model:

𝐿𝑎𝑑𝑣 = min
𝛼

max
𝛽

(

𝔼∀ℎ𝑠∈𝑆𝑜𝑢𝑟𝑐𝑒[𝑙𝑜𝑔(𝐷𝛽 (𝑓𝛼(𝐸𝜑(ℎ𝑠))))]+
𝔼∀ℎ𝑡∈𝑇 𝑎𝑟𝑔𝑒𝑡[𝑙𝑜𝑔(1 −𝐷𝛽 (𝑓𝛼(𝐸𝜑(ℎ𝑡))))]

)

(9)

where 𝑓𝛼 comprises learnable layers appended to the frozen Bert 
model 𝐸𝜑, and 𝐷𝛽 denotes a discriminator classifier responsible for 
distinguishing between source and target datasets. The goal of gra-
dient reversal is to confuse the discriminator, thereby hindering it 
from discerning the two distributions. The final objective function of
LogBD:

𝐿𝑜𝑠𝑠 = 𝐿𝑆𝑉 𝐷𝐷 − 𝜆𝐿𝑎𝑑𝑣. (10)

LogTAD [88] utilizes a comparable technique, replacing the ar-
chitecture with an LSTM. In contrast, MetaLog [89] adopts a meta-
learning strategy rather than adversarial training to achieve domain
adaptation.

Future Generation Computer Systems 175 (2026) 108090 

7 



A. García Gómez et al.

Fig. 6. Example of a graph generations and their main difference between using 
the code base and the log records.

5.2.3.  Graph-wise Log Anomaly Detection
As demonstrated in previous methods, log data can be addressed us-

ing Natural Language Processing (NLP) techniques. In sequentially-wise, 
each log entry is defined by its relationship to other logs, independent 
of the intrinsic syntax of the log message. In terms of Embedding-wise, 
it also incorporates the information within the log message, with both 
approaches handling the data as a sequential chronology of tokens. Nev-
ertheless, NLP problems can also be modeled as graphs [102]. Consider 
a series of logs from a deterministic program in which their interde-
pendencies arise from the execution state. These relationships can be il-
lustrated as a graph structure, potentially offering a more sophisticated 
problem representation. As shown in Fig. 6, it is feasible to develop a 
graph model of a code base using only the sequence of logs of each run. 
This graph does not strictly match the structural layout of the original 
code base, but maintains logical consistency (for example, 𝑙𝑜𝑔3 never 
precedes 𝑙𝑜𝑔1). It is important to note that since 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝑏 was consis-
tently false during executions, 𝑙𝑜𝑔2 is omitted from the graph generated 
by the logs.

Consider defining graphs as 𝐺 = (𝑉 ,𝐸), with 𝑉  representing the 
nodes (each event id is symbolized by a node) and 𝐸 representing the 
edges such that 𝐸 = {(𝑒1, 𝑒2)|𝑒1, 𝑒2 ∈ 𝑉 }. Fig. 6 illustrates how logs can 
be depicted in this manner, enabling the use of graph anomaly detection 
techniques for the problem at hand, as detailed in the survey by [103]. 
The Algorithm 4 presents a standard pseudo-code where 𝑇  and 𝐸 denote 
the template and event sets, respectively. This algorithm is analogous to 

Algorithm 4 Graph-wise Log Anomaly Detection generic pseudo-code.
1: 𝑚𝑜𝑑𝑒𝑙 ← load_model() ⊳ Machine learning model
2: 𝑒𝑚𝑏_𝑚𝑜𝑑𝑒𝑙 ← load_emb_model() ⊳ Embedding model
3: 𝑙𝑜𝑔𝑠 ← [𝑙𝑜𝑔1, 𝑙𝑜𝑔2, .., 𝑙𝑜𝑔𝑛] ⊳ Input log sequence
4: 𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞 ← []
5: for 𝑙𝑜𝑔 in 𝑙𝑜𝑔𝑠 do
6:  𝑒, (𝑡, _) ← parser(𝑙𝑜𝑔) ⊳ (𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇 )
7:  𝑣 ← emb_model(tokenizer(𝑡)) ⊳ 𝑇 → ℝ1𝑥𝑚

8:  𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞.append((𝑒, 𝑣))
9: end for
10: 𝑔𝑟𝑎𝑝ℎ ← make_graph(𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞) ⊳ (𝑒 ∈ 𝐸,ℝ1𝑥𝑚) → 𝐺
11: 𝑜𝑢𝑡𝑝𝑢𝑡 ← model(𝑔𝑟𝑎𝑝ℎ) ⊳ 𝐺 → ℝ𝑛𝑥𝑜

12: return is_anomaly(𝑜𝑢𝑡𝑝𝑢𝑡) ⊳ ℝ𝑛𝑥𝑜 → {𝑇 𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}

Table 6 
Example of the intermediate outputs of the steps in the Graph-
wise methods following Algorithm 4.

 Step  Sub-Method (optional)  Output
 Input 𝑙𝑜𝑔1, 𝑙𝑜𝑔2, 𝑙𝑜𝑔3
 For loop  parser(𝑙𝑜𝑔1) & emb_model(𝑡1) 𝑒1, 𝑒𝑚𝑏1

 parser(𝑙𝑜𝑔2) & emb_model(𝑡2) 𝑒2, 𝑒𝑚𝑏2
 parser(𝑙𝑜𝑔3) & emb_model(𝑡3) 𝑒3, 𝑒𝑚𝑏3

 Event Seq.  [(𝑒1, 𝑒𝑚𝑏1), (𝑒2, 𝑒𝑚𝑏2), (𝑒3, 𝑒𝑚𝑏3)]
 Make graph  [𝑔1]
 Model  [𝑠𝑐𝑜𝑟𝑒1]
 Is Anomaly  [True]

Algorithm 3 but processes sequences without considering their chrono-
logical order by generating graphs instead (Line 10), an illustration of 
intermediate outcomes is provided in Table 6. We can categorize vari-
ous methods within this class based on their approach to constructing 
the initial graph:

• Edge formulation: In LogFlash [74], an edge depicts the frequency of 
occurrence of various logs, defined as 𝐺 = (𝑉 ,𝐸, 𝐹𝐸 ), where 𝐹𝐸 ∈ ℝ
serves as the edge weights. In particular, this approach updates the 
graph dynamically, enabling adaptation to changing system condi-
tions.

• Edge-Node formulation: An embedding representation in the graph 
can be characterized as 𝐺 = (𝑉 ,𝐸, 𝐹𝑉 , 𝐹𝐸 ), with 𝐹𝑉 ∈ ℝ𝑛 serving as 
embedding vectors. This formulation is common among the majority 
of publications in the field:
– Use logs as embedding nodes: In the study by [77], the LogGD ap-
proach utilizes a Bert [96] model to encode the templates, thus 
producing the embeddings for each node. In a similar vein, LogGT 
[80] was created to facilitate transfer learning between source 
and target datasets.

– Use logs and traces as embedding nodes: In DeepTraLog [76], the 
authors construct a graph from the system’s logs and traces. They 
adopted a technique similar to LogRobust [69] to determine the 
embedding values assigned to each node. Each word in the log 
uses the pre-trained GloVe model [104], and these are subse-
quently combined using a weighted sum using TFxIDF.

– Use fields in each log: GLAD [79] builds a varied graph by em-
ploying Sentence-BERT [105] to generate embeddings for every 
node, while using BART [106] to identify fields in each log.

After generating the graphs for various publications, a Graph Neu-
ral Network (GNN) framework is utilized: DeepTraLog employs GGNN 
[107], LogGD GTN [108], GLAD GCN [109], and LogGT HGT [110].

5.2.4.  Comparsion Log Anomaly Detection
The LAD approaches can be classified according to the categories 

listed before. Table 7 provides a brief overview of these categories. 
Sequential-based methods, like DeepLog, rely solely on the event ID in 
a sequential arrangement, whereas embedding-based methods, such as 
LogRobust, utilize the template instead of the event ID, sometimes incor-
porating the log message, as seen in NeuralLog. Graph-based techniques 
typically employ a template or message in a non-sequential format, of-
ten including an Event ID to distinguish between different nodes within 
the graph.

Table 7 
Comparison between the different categories.
 Type  Event ID  Template  Message  Sequential
 Sequential-wise  Yes  No  No  Yes
 Embedding-wise  No  Yes  Maybe  Yes
 Graph-wise  Yes  Yes  Maybe  No
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6.  Log dataset

Datasets such as HDFS and BGL are frequently regarded as straight-
forward for detecting log anomalies in academic studies. Research has 
shown that heuristic techniques can achieve precision comparable to 
deep learning approaches [111], with F1 scores surpassing 98% in BGL 
under specific conditions. These datasets were originally designed for 
general anomaly detection, not specifically for intrusion detection sys-
tems (IDS). On the other hand, the ADFA dataset was specifically created 
for IDS applications [112]. The study points out that while earlier IDS 
systems could identify intrusions through command frequency, they fall 
short when dealing with contemporary threats distributed across mul-
tiple traces. This indicates that excelling on standard datasets does not 
ensure practical effectiveness. To keep addressing these challenges, the 
updated AIT version 2 dataset was developed incorporating various sys-
tems and applications [113]. As the development of new software archi-
tectures continues, attacks on these systems will evolve as well. There-
fore, it is essential to consistently create updated benchmark datasets. 
Although these datasets can realistically reflect contemporary cyberse-
curity advancements, they risk becoming outdated over time.

6.1.  Log dataset generation framework

We propose a different strategy to improve the design of intrusion 
detection systems (IDSs) by focusing on direct access and code manipu-
lation to produce accurately anomalies from logs. This approach seeks 
to improve the evaluation of new methodologies and enrich the under-
standing of actual data. We emphasize the importance of accurate data 
interpretation, making connections to fields such as computer vision, 
where examining datasets helps to minimize biases [114]. The open 
source framework for generating verification datasets operates accord-
ing to the following steps:

1. Each execution of the framework collects the logs generated by the 
method via 𝑙𝑜𝑔.𝑖𝑛𝑓𝑜.

2. The templates and logs from the execution processes the data by seg-
menting the logs into the following features: event ID, log level, time 
difference, message, and template used. This streamlined structure 
allows to generate datasets that can be applied directly to various 
Log Anomaly methods without additional preprocessing.

3. Each dataset embodies a challenge, contains a specific anomaly, and 
comprises its own training and testing data.

4. The method can employ the training data to adjust the model, though 
altering hyperparameters is not permitted.

5. The test data function as a unit tests: if a method fails to detect the 
majority of anomalies, it should be deemed a Fail; otherwise, it is 
considered a Pass.

An example of this challenge is described in Pseudo-code
Algorithm 5, which illustrates a script trying to reach a resource. Under 
normal circumstances, the script manages to succeed after several at-
tempts, but under irregular conditions, it does not succeed (Line 4). If it 
fails, the final log is 𝑚𝑠𝑔_2 (Line 6) else 𝑚𝑠𝑔_4 (Line 13). Logging methods 
were designed to allow dynamic adjustments to log messages: adding, 
removing, or modifying them without altering the code, as described 
in [69]. These methods emulate consistent software updates with the 
goal of assessing a technique’s robustness against various log versions 
derived from the training dataset.

At the beginning of a new project, it is typical for the general in-
formation and communication systems to be developed alongside the 
CIDS/IDS as shown in Fig. 7. A particularly concerning in this situa-
tions is the lack of data for training models use in the CIDS/IDS. This 
creates a bottleneck because data collection for training and verification 
is only possible with nearly finalized software versions. To address this, 
established datasets from existing literature are used initially, though 
they may not capture specific features needed for the project, such as 

Algorithm 5 Challenge pseudo-code.
1: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ← Resource()
2: 𝑖 ← 0
3: logs.info(msg_1)
4: while not 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒.𝑖𝑛𝑖𝑡() do 
5:  if 𝑖 >= 10 then
6:  logs.info(msg_2) 
7:  return None
8:  end if
9:  logs.info(msg_3)
10:  sleep()
11:  𝑖 ← 𝑖 + 1
12: end while
13: logs.info(msg_4) 
14: return 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒

Fig. 7. Example of a project of a information and communication systems with a 
CIDS/IDS use for based detection. Note that Step 2 and 3 can be done in parallel.

certain log attributes [111]. Our framework helps to improve model ver-
ification during early evaluations, prior to obtaining definitive project 
data.

6.2.  Design challenges

An anomaly is a data point that deviates noticeably from a given dis-
tribution, as mentioned in [115]. We define a challenge as a function 
𝐶(𝑁, as_anomaly), which produces 𝑁 data points classified as normal 
or abnormal. This challenge will be executed in an unsupervised set-
ting using a model 𝑓 (𝑥) that returns true if the data point 𝑥 is deemed 
anomalous and False otherwise. Pseudo-code Algorithm 6 demonstrates 
the execution of a challenge 𝐶. The process begins with training the 
model on Line 2, followed by preparing test sets on Lines 3-4 to deter-
mine the final F1 score. Each challenge must include an anomaly of one 
of the following types:

• Point Anomalies: occur when a single instance is considered abnor-
mal relative to the rest.

• Contextual Anomalies: occur when an instance appears abnormal 
within a particular context.

• Collective Anomalies: occur when a collection of instances is con-
sidered anomalous compared to the others.

These anomaly types are based on the work of [115]. As mentioned 
earlier, a model that does not identify anomalies is considered inad-
equate in overcoming the challenges. Effective reasoning can demon-
strate that a model will fail to meet a specific challenge, thus eliminat-
ing the need for empirical evaluation. However, this logic should not be 
reversed; models frequently use shortcuts in the learning phase [116], 
potentially leading to outcomes that do not align with our original
expectations.
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Algorithm 6 Run challenge C pseudo-code.
1: function run_challenge(N: int)→ float
2:  𝜃 ← train(𝑓, 𝐶(𝑁,𝐹𝑎𝑙𝑠𝑒))
3:  𝑛𝑜𝑟𝑚𝑎𝑙 ← 𝐶(𝑁,𝐹𝑎𝑙𝑠𝑒)
4:  𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 ← 𝐶(𝑁, 𝑇 𝑟𝑢𝑒)
5:  return get_f1(𝑓𝜃(𝑛𝑜𝑟𝑚𝑎𝑙), 𝑓𝜃(𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙))
6: end function

6.3.  Implemented challenges

We pinpoint several issues or risks highlighted in previous publica-
tions. These were transformed into challenges and are defined as stan-
dard use cases typically encountered in regular programs. Although this 
straightforward methodology does not cover all possible issues that an 
Log Anomaly CIDS might face, we assert that it sufficiently demonstrates 
the framework’s effectiveness, as evidenced in the Results section. The 
challenges are grouped into four distinct categories.

6.3.1.  Resource access
A class representing a resource that must be accessed by the code. 

This class is tailored to simulate sensor behavior, where multiple at-
tempts may be required for successful initialization. Fig. 8 illustrates a 
diagram depicting resource challenges 1-3. Green arrows are exclusive 
to normal executions, whereas red arrows appear only in abnormal sit-
uations.

• Challenge 1: Should the resource remain undiscovered after various 
attempts, the loop ends without issuing any confirmation message. 
A model is capable of recognizing this anomaly through two meth-
ods: either by noting the sequence length, as normal sequences are 
shorter, or by identifying the missing final event ID, which signals 
resource initialization.

• Challenge 2: Should the resource be initialized, the code will yield 
an event ID that confirms it; otherwise, it will provide an event ID 
indicating an error. A model formulated to identify event IDs not 
present in the training dataset will be successful.

• Challenge 3: Similarly to challenge 2, the sequence IDs for both ab-
normal and normal events are indistinguishable, since the logs uti-
lize identical templates. Consequently, only models that examine the 
individual log messages are able to identify anomalies.

6.3.2.  Load dependencies
Several dependencies are being loaded sequentially, and the time 

distribution between these loads varies between normal and abnormal 
scenarios.

Fig. 8. Diagram of the resource challenges. Note that challenge 1 does not have 
log 4.

Fig. 9. Diagram of the challenges 7 and 8.

• Challenge 4: All dependencies generally require a similar load time, 
but in abnormal circumstances, one of them may take significantly 
longer.

• Challenge 5: In abnormal cases, the load time of two dependencies 
is interchanged.

• Challenge 6: The same as challenge 4, but the time difference is 
much smaller.

6.3.3.  X-Ray machine
Medical devices often exhibit a well-defined behavior. In this study, 

our objective is to evaluate the effectiveness of anomaly detection tech-
niques in recognizing these states and identifying operational outliers. 
Fig. 9 illustrates the appearance of the diagrams for Challenges 7 and 8. 
Similarly to Fig. 8, the red edges are exclusive to abnormal scenarios, 
and the green edges denote normal ones.

• Challenge 7: The machine operates in either verification or mea-
surement mode, constantly carrying out tasks associated with the 
chosen mode. Issues arise when the machine mistakenly performs 
functions of the non-selected mode, which can be identified by log 
flag statuses and variations in task completion times.

• Challenge 8: Initially, the machine is required to execute the verifi-
cation process before proceeding with the measurements. However, 
in cases of anomalous behavior, the verification steps are bypassed.

6.3.4.  Collaborative setting
CIDS introduce several additional complexities that are not ad-

dressed by traditional IDS. For example, a federated learning approach 
might encounter challenges in data imbalance, which can affect its per-
formance. Numerous benchmarks exist in the literature to assess the 
efficacy of the model under such conditions [117]. Consequently, we 
will focus on various challenges unique to CIDS that are not frequently 
discussed in the literature.

• Challenge 9: The system comprises three clients that execute iden-
tical code. As each client operates its own parser, the final template 
of one client’s output deviates from the others. Models that either 
bypass the parser or can adjust the final templates are necessary to 
distinguish normal activity from anomalies.

• Challenge 10: Similar to challenge 9, three clients are executing the 
same code. However, unlike the others, one client was compromised 
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prior to the training phase, generating anomalous data within the 
training set. Only models that can isolate the compromised client 
will successfully identify these anomalies.

7.  Results

In order to demonstrate the practicality of employing the framework, 
we utilized DeepLog [34] to address several challenges. This approach 
is commonly seen as a standard in previous log data research. To our 
knowledge, no official version of the DeepLog code exists. However, 
multiple implementations are available, and we selected [118] because 
it has a high number of stars on GitHub. To facilitate a more robust 
comparison in the discussion of results, we implemented two heuristic 
approaches inspired by [111]. These approaches illustrate how straight-
forward techniques can outperform a deep learning model in specific 
instances. The methods are as detailed below (Algorithms 1, 5 and 6).

• Length + Event: Initially, verify whether an event has appeared in 
the training dataset before; next, ensure that the sequence length fits 
within the range of those in the training sequences. If both conditions 
are met, the sequence is deemed nominal; otherwise, it is treated as 
an anomaly.

• Time: When the duration of a sequence falls short of or exceeds 
the durations present in the training datasets, it is regarded as an 
anomaly.

7.1.  Experiments setup

We trained the different methods in all the challenges and used the 
default HDFS dataset from the Deeplog repository as a reference. Some 
hyperparameters were altered from the original DeepLog code:

• For all cases: The batch size was adjusted from 2048 down to 100 
primarily because the challenge datasets contain merely 100 cases. 
Moreover, the Deeplog implementation allows the test set to be run 
using either only the unique event sequences or running through all 
event sequences. We decide running all event sequences.

• Only for challenges: Given the shorter log sequences and fewer 
unique events relative to HDFS, we set the window size to 3 and 
limited the model output to 10. In Deeplog’s implementation, a se-
quence is flagged as anomalous if the next log event is not within the 
model’s top n predictions. Thus, following this reasoning, we reduce 
n from 9 to 2.

The study evaluates models using three different test sets, each con-
sisting of 100 cases, to adequately represent the data distribution. The 
goal is to achieve an F1 score of at least 0.7, as identifying all cases as 
anomalies yields an F1 score of 0.67. The model was trained three times 
per challenge with randomly generated datasets, calculating the average 
and standard deviation of the results. The primary aim is to determine 
whether various methods pass the challenges, thus, solely performance 
metrics are employed. The experiments were repeated with the HDFS 
dataset on a system with an Intel Core Ultra 7 165U x14 CPU and 16GB 
of RAM. We divided the results into two sections:

• Centralized Setup: we run Challenges 1-8 and HDFS in a centralize 
set-up.

• Collaborative Setup: The primary objective is to evaluate how con-
ventional FedAvg [18] addresses the challenges. Therefore, we con-
centrate solely on utilizing Deeplog, executing Challenges 9-10 and 
HDFS.

7.2.  Centralized setup

We separately present the results achieved in Deeplog as well as 
those from the heuristics.

Table 8 
Simple approach with the results of the test datasets v1.
 Dataset  Precision  Recall  F1  Test
 HDFS 0.98 ± 0.00 0.84 ± 0.01 0.90 ± 0.00  PASS
 Challenge 1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00  PASS
 Challenge 2 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00  PASS
 Challenge 3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 4 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 5 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 7 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 8 1.00 ± 0.00 0.38 ± 0.04 0.55 ± 0.04  FAIL

Table 9 
Simple time approach with the results of the test datasets v1.
 Dataset  Precision  Recall  F1  Test
 HDFS  NaN  NaN  NaN  NaN
 Challenge 1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00  PASS
 Challenge 2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 4 0.86 ± 0.03 1.00 ± 0.00 0.93 ± 0.02  PASS
 Challenge 5 0.39 ± 0.04 0.06 ± 0.02 0.10 ± 0.04  FAIL
 Challenge 6 0.94 ± 0.03 0.61 ± 0.01 0.74 ± 0.02  PASS
 Challenge 7 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 8 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL

Table 10 
Simple time approach with the results of the test datasets v2.
 Dataset  Precision  Recall  F1  Test
 HDFS  NaN  NaN  NaN  NaN
 Challenge 1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00  PASS
 Challenge 2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 4 0.88 ± 0.00 1.00 ± 0.00 0.94 ± 0.00  PASS
 Challenge 5 0.50 ± 0.10 0.08 ± 0.02 0.14 ± 0.02  FAIL
 Challenge 6 0.98 ± 0.01 0.60 ± 0.03 0.74 ± 0.02  PASS
 Challenge 7 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 8 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL

7.2.1.  Results with Deeplog
Table 11 displays the results. Furthermore, we applied the model to 

test the datasets using a second version of the challenge code, which 
is shown in Table 12. The remaining methodology remains unchanged. 
Challenges 4, 5, and 6 consistently have the same sequence of log events, 
differing only in execution time. As DeepLog does not account for timing 
variations in procedures, it inherently failed these challenges. Further 
analysis of these outcomes is provided in the discussion section.

7.2.2.  Results with heuristics
The outcomes derived from the Length + Event method are reported 

in Table 8, whereas the results associated with the Time method are 
displayed in Tables 9 and 10. Due to the absence of time data in the 
HDFS dataset utilized for these experiments, the Time heuristics indicate 
NaN for this field.

7.3.  Collaborative setup

We adapted the existing Deeplog configuration to operate in a fed-
erated setting utilizing the Flower framework[119]. The weight updat-
ing process employed the FedAvg [18] algorithm, which included three 
clients, three global rounds, and three local epochs per round. The hy-
perparameters of the centralized version were maintained, with each 
client having equal-sized training datasets. The outcomes are presented 
in Tables 11 and 12. We also reevaluated the system’s performance us-
ing HDFS datasets to verify reliability. Similarly to [26], the federated 
configuration showed lower performance; however, it should be consid-
ered that with enhanced optimization, this performance disparity could 
be minimized.
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Table 11 
DeepLog model with the results of the test datasets v1. Fed. 
HDFS, Challenge 9 and Challenge 10 are part of the Collabora-
tive Setup.
 Dataset  Precision  Recall  F1  Test
 HDFS 0.96 ± 0.00 0.94 ± 0.01 0.95 ± 0.00  PASS
 Challenge 1 0.0 ± 0.00 0.0 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 2 0.79 ± 0.01 1.00 ± 0.00 0.88 ± 0.01  PASS
 Challenge 3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 4 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 5 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 7 0.87 ± 0.05 0.84 ± 0.08 0.86 ± 0.06  PASS
 Challenge 8 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Fed. HDFS 0.82 ± 0.01 0.94 ± 0.01 0.88 ± 0.02  PASS
 Challenge 9 0.67 ± 0.00 0.67 ± 0.00 0.67 ± 0.00  FAIL
 Challenge 10 0.75 ± 0.00 1.00 ± 0.00 0.86 ± 0.00  PASS

Table 12 
DeepLog model with the results of the test datasets v2. Fed. 
HDFS, Challenge 9 and Challenge 10 are part of the Collabora-
tive Setup.
 Dataset  Precision  Recall  F1  Test
 HDFS  NaN  NaN  NaN  NaN
 Challenge 1 0.50 ± 0.00 1.00 ± 0.00 0.67 ± 0.00  FAIL
 Challenge 2 0.50 ± 0.00 1.00 ± 0.00 0.67 ± 0.00  FAIL
 Challenge 3 0.50 ± 0.00 1.00 ± 0.00 0.67 ± 0.00  FAIL
 Challenge 4 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 5 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  FAIL
 Challenge 7 0.50 ± 0.00 1.00 ± 0.00 0.67 ± 0.00  FAIL
 Challenge 8 0.50 ± 0.00 1.00 ± 0.00 0.67 ± 0.00  FAIL
 Fed. HDFS  NaN  NaN  NaN  NaN
 Challenge 9 0.50 ± 0.00 1.00 ± 0.00 0.67 ± 0.00  FAIL
 Challenge 10 0.50 ± 0.00 1.00 ± 0.00 0.67 ± 0.00  FAIL

7.4.  Result discussion

Based on the results, while Deeplog achieves strong performance 
with HDFS, it struggles with many challenges. Notably, the small win-
dow size of 3 limits the LSTM’s ability to consider more than three pre-
ceding events, thereby constraining the architecture’s capability. Nev-
ertheless, this limitation does not fully account for its difficulties with 
various challenges. If we maintain the original window size, the LSTM 
merely needs to predict the final events in the sequence, as the sequences 
are typically short in these challenges. An approach to addressing this 
issue with a larger window size is to incorporate padding at the begin-
ning of the sequence. This perspective highlights the importance of us-
ing challenges from the beginning of the project, as illustrated in Fig. 7. 
These discussions contribute to developing more robust models. By iden-
tifying early on which challenges may pose difficulties for the model, we 
can adapt or alleviate the risks in the project’s initial phases. We will 
evaluate the results of each challenge individually.

• Resource access (Challenges 1-2): In Challenge 1, abnormal sequences 
significantly exceed the nominal ones in length. This is identified by 
counting the number of events per sequence, as done in the Length + 
Events approach, or by measuring the total duration of the sequence 
as in the Time method. However, Deeplog struggles to detect these 
anomalies. This is primarily because its LSTM-based internal states 
focus solely on predicting the next event, neglecting the overall se-
quence structure. It performs better in spotting anomalous events in 
Challenge 2, but the Length + Events strategy still achieves a higher 
F1 score.

• Resource access (Challenge 3): A key feature of Challenge 3 is the vari-
ability in log entries. In a normal situation, the log concludes with 
“Errors found None,” whereas, in an abnormal situation, it reads, “Er-
rors found [’Exception: something unexpected has happened, please 

reboot’].” Despite this, both scenarios share the template “Errors 
found <*>” resulting in identical event IDs. Additionally, there are 
no temporal or spatial variances that could aid in the detection. This 
challenge emphasizes the necessity of examining the variables within 
the logs, as sequential methods prove insufficient. None of the con-
sidered methods effectively address this challenge.

• Load Dependencies (Challenges 4-6): The effectiveness hinges on eval-
uating the timing of the sequences, rendering the Time heuristic the 
only viable option. However, it falls short in Challenge 5 because it 
does not consider the time needed to perform each event tuple.

• X-Ray Machine (Challenges 7-8): It is essential to correlate events, a 
task that heuristics cannot perform. DeepLog utilizes an LSTM, which 
simplifies this task as long as the layer does not exploit a shortcut. By 
examining the internal architecture of the layer [94], we hypothesize 
that its behavior in this challenge is influenced by the presence of 
the forget gate, allowing it to disregard previous inputs. When the 
model focuses solely on the most recent event ID, it recognizes that if 
it detects a measurement log, subsequent logs should be of the same 
type, and vice versa (Fig. 9). This approach succeeds in Challenge 
7, but fails in Challenge 8; if a significant portion of the sequence 
is suddenly skipped, the LSTM will not detect it. The creation of 
Challenge 8, aimed at causing Deeplog to fail, was develop inspired 
by the experiments detailed in [116].

• Collaborative setting (Challenges 9-10): The anomalies are quite sim-
ple to understand. The major challenges originate in the federated 
process itself. Deeplog does not succeed in Challenge 9 because tem-
plates from different clients are not validated during training. This 
problem could be addressed by adjusting the training script. Nev-
ertheless, Challenge 10 is successful because FedAvg efficiently re-
moves anomalous instances from the training data. It is crucial to 
point out that although FedAvg can address Challenge 10, it does 
not demonstrate its capability to handle more intricate attacks such 
as [21,22] and [23].

8.  Discussion

We structured our discoveries around three primary research ques-
tions, which were addressed in various sections of this publication. In 
this section, we will offer research answers (RA) to these research ques-
tions based on earlier observations.

RQ1: What methods and baselines are used in the literature for 
Anomaly CIDS?

RA1: In the literature discussion section, we demonstrate that not all 
Anomaly CIDS primarily rely on logs to identify system abnormalities. 
By examining the baseline datasets used for the evaluation (as shown in 
Table 1), we can identify the type of input domain involved. Interest-
ingly, using Log Anomaly CIDS is relatively uncommon, prompting us 
to also consider similar LAD techniques to enhance sample distribution. 
Based on our research, we determine that the most commonly used base-
line datasets for Log Anomaly CIDS and comparable methods are HDFS 
and BGL.

When analyzing the methods used, it is essential to divide them into 
two categories. Firstly, under the collaborative framework, as detailed 
in the section Anomaly CIDS, we explore different strategies for node 
division: Centralized, Decentralized, and Distributed CIDS. In addition, 
the literature indicates that the most common method of updating the 
local models of the nodes within CIDS is federated learning, with Fe-
dAvg being the most widely used technique, although other methods 
are also identified. In the subsequent category, which concentrates on 
the algorithm specific to Log Anomaly Detection, various architectures 
are shown in Fig. 5. However, recent developments are more effectively 
depicted in Fig. 1, which emphasizes the increasing adoption of LLM 
and graph-based methods in contemporary Log Anomaly Detection tech-
niques.

RQ2: How can we categorize the different Log Anomaly CIDS 
and other Log Anomaly approaches?
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RA2: Earlier works, as noted in the Related Work section, catego-
rizes approaches based on the overarching architecture employed, such 
as CNN, RNN, or Transformers. Although this classification may be infor-
mative, we contend that it is not the most insightful point of view. In our 
study, we shift the focus by categorizing based on the manner in which 
data is processed and the objective function utilized to optimize the 
models. By examining these characteristics, we have established three 
principal categories:

• Sequential-wise: Each log sequence undergoes a transformation into 
an event ID, and the model is optimized by attempting to forecast the 
subsequent or masked event in a sequence. This method is relatively 
straightforward and requires less computational power. Nonetheless, 
merely using event IDs leads to a significant loss of log message in-
formation. Additionally, there is substantial reliance on how logs are 
parsed, making this method susceptible to alterations in logs follow-
ing future code updates.

• Embedding-wise: An embedding encoder is employed to analyze the 
logs, as opposed to relying solely on the event ID numbers. These 
techniques were developed to address the limitations associated with 
Sequential-wise methods. However, the majority of methods in this 
category are supervised, which poses challenges for their application 
in zero-day attacks.

• Graph-wise: Function similarly to the Embedding-wise approach, 
but instead of arranging the logs sequentially by chronological or-
der, they are connected as a graph. This technique often involves 
greater complexity and necessitates additional steps compared to 
other methods.
RQ3: To what extent can we improve the reliability of Log 

Anomaly CIDS?
RA3: Creating Log Anomaly CIDS necessitates considering several 

elements, such as strategies for anomaly detection and enhancements to 
local models. Although federated learning is used to prevent the sharing 
of sensitive data between nodes, it generally achieves lower results than 
centralized training. Often, initial CIDS designs do not include specific 
training and testing datasets, leading to a dependence on benchmark 
datasets that might not ensure optimal deployment performance. This 
paper introduces an open framework for early evaluation, allowing the 
thorough testing of models against various challenges to identify vul-
nerabilities and improve robustness. The framework effectively identi-
fies the shortcomings in current methods, such as DeepLog. Although 
this framework proposal and application do not directly provide an an-
swer to RQ3, we believe it represents progress towards developing more 
reliable Log Anomaly CIDS.

8.1.  Threats to validity

We conducted an empirical assessment of the proposed framework, 
concentrating on Deeplog due to its prominence as a standard bench-
mark in the field. Since the framework is offered as a proof of concept, 
only a limited evaluation was performed. We recognize that the absence 
of additional models and the limited number of challenges pose a threat 
to validity. A more comprehensive empirical analysis will be carried out 
in future research.

9.  Conclusion

This research seeks to provide a comprehensive summary of Log 
Anomaly CIDS, emphasizing its main characteristics, prevailing trends, 
and obstacles. Furthermore, we have created a novel open-source frame-
work to aid the progress of these systems. Our findings are supported by 
numerous recent studies on this subject, demonstrating that only a small 
number of Anomaly CIDS rely on logs for anomaly detection. We exam-
ine and classify multiple LAD techniques and offer tools to enhance the 
robustness of these systems. We hope that our work will aid the research 
and development of upcoming Log Anomaly CIDS.

In future work, our main aim is to further refine the distinct chal-
lenges of the framework. We plan to achieve this by developing a more 
precise methodology to identify a broader spectrum of anomalies and 
risks that Log Anomaly CIDS might face. In addition, we intend to intro-
duce challenges on the same subject with varying levels of difficulty to 
enhance model comparison. Finally, we will incorporate multiple base-
line datasets to establish a unified testing framework. Additionally, we 
aim to investigate alternative metrics for CIDS, such as memory or en-
ergy usage, and assess any potential risks these methods might face in 
real world scenarios.
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