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ABSTRACT

Log Anomaly Collaborative Intrusion Detection Systems (CIDS) are designed to detect suspicious activities and se-
curity breaches by analyzing log files using anomaly detection techniques while leveraging collaboration between
multiple entities (e.g., different systems, organizations, or network nodes). Unlike traditional Intrusion Detec-
tion Systems (IDS) that require centralized algorithm updates and data aggregation, CIDS enable decentralized
updates without extensive data exchange, improving efficacy, scalability, and compliance with regulatory con-
straints. Additionally, inter-detector communication helps to reduce the number of false positives. These systems
are particularly useful in distributed environments, where individual system have limited visibility into potential
threats. This paper reviews the current landscape of Log Anomaly CIDS and introduces an open-source framework
designed to create benchmark datasets for evaluating system performance. We categorize log anomaly detectors
into three categories: Sequential-wise, Embedding-wise, and Graph-wise. Furthermore, our open framework fa-
cilitates rigorous evaluation against different challenges identifying weaknesses in existing methods like Deeplog

and enhancing model robustness.

1. Introduction

Information and communication systems are increasingly growing in
size and complexity while becoming more essential in our daily lives.
As mentioned in [1], cyber attacks on these systems pose a substantial
threat to society, consistently endangering them. Automating certain
tasks, such as cybersecurity, is vital to keep up with this trend. This sub-
ject has been discussed before; 25 years ago, IBM released a manifesto
[2] advocating for the development of self-managing systems that can
autonomously configure, repair, and secure themselves. The core idea
is that systems are evolving to a level of complexity that human main-
tenance is not feasible, thereby emphasizing the necessity of creating
automated tools for these tasks. Over the past two decades, publications
have addressed this topic. Early approaches to Collaborative Intrusion
Detection Systems (CIDS) can trace back to 2003. For instance, [3] inves-
tigated CIDS to enhance intrusion detection across distributed systems.
In 2012, [4] motivated their research in creating parsers capable of au-
tomatically processing logs to aid in the maintenance of large systems.
Another example is from 2015, when LogCluster [5] was developed to
autonomously detect system failures through log data analysis and was
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implemented in Microsoft online services. The developers underscored
the importance of such a tool, as these services generated petabytes of
logs each day, an amount too vast for manual human analysis. In align-
ment with this thought process, our work will focus on current methods
employed to automatically analyze logs to identify anomalous behav-
ior or intrusion attacks in decentralized systems known as Log Anomaly
CIDS [6].

It is important to note that not all CIDS utilize logs [7] for anomaly
detection, nor do all CIDS examine anomalous behavior. A more detailed
discussion will be provided in the paper. While our primary focus is
on Log Anomaly CIDS, we will also explore other Anomaly CIDS and
comparable methods to obtain a broader understanding of the current
state of the art and emerging trends. This paper revolves around the
following research questions (RQ).

RQ1: What methods and baselines are used in the literature for
Anomaly CIDS? We will explore different methods to detect anoma-
lies in CIDS from recent years. As noted previously, not all Anomaly
CIDS rely solely on logs; some utilize network traffic packets or diverse
time series outputs from multiple sensors. To broaden our investigation,
we will also consider Intrusion Detection Systems (IDS), which function
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Fig. 1. The literature review distinguishes between publications that introduce new Intrusion Detection Systems (IDS) and Collaborative Intrusion Detection Systems
(CIDS) methods on the upper section and those identified via Log Anomaly Detection (LAD) on the lower section. Each method is color-coded to indicate the presence
of specific keywords and the type of machine learning architecture employed. All the publications are sorted in chronological order.

similarly to CIDS but focus on centralized systems. Furthermore, we will
examine Log Anomaly Detection (LAD) approaches, which involve algo-
rithms that scan logs to identify unusual behavior in a similar way as
Log Anomaly CIDS. Fig. 1 illustrates all the publications referenced in
this study, all the methods considered are machine learning based. We
compile the articles by employing the snowball technique on Google
Scholar, utilizing the previously specified keywords.

RQ2: How can we categorize the different Log Anomaly CIDS
and other Log Anomaly approaches? We will organize our classifica-
tion based on all the logging methods collected in RQ1. Other studies,
such as [8] or [9], often categorize methods according to the architec-
ture of the machine learning model. Although this aspect has signifi-
cance, we believe that it is not the most crucial element. Since machine
learning models are data-driven algorithms that depend on an optimiza-
tion process, our categorization will emphasize data pre-processing tech-
niques and the objective functions employed during training.

RQ3: To what extent can we improve the reliability of Log
Anomaly CIDS? To effectively create and deploy these systems in prac-
tical environments, it is crucial to ensure their robustness. We have
created an open-source framework intended to produce well-organized
datasets, enabling preliminary assessment of these techniques in diverse
contexts. Our main objective is to provide tools to allow for a thor-
ough analysis that support the creation and evaluation of more sophis-
ticated and robust algorithms in this domain. Although this study will
not definitively resolve RQ3, it will provide tools to address it in future
research.

The corresponding code is available for access here [10].

The paper is organized into these sections: In Section 2, a comparison
with prior studies on the same subject is presented. Section 3 introduces
the concept of a CIDS and examines how multiple nodes can collaborate
for intrusion detection in decentralized systems. Section 4 evaluates cur-
rent state-of-the-art trends to address RQ1. In Section 5, we analyze the
log processing in Log Anomaly CIDS and categorize them, focusing on
RQ2. Section 6 discusses existing benchmarks and shows how our open-
source framework addresses RQ3. Section 7 includes a demonstration of
how our framework can be used to compare different models. Section 8
answers the research questions based on insights from previous sections.
Finally, Section 9 covers conclusions and future work.

2. Related work

The literature includes several SoK papers and surveys focused on
CIDS, such as those on Log Anomaly CIDS. In addition, there are nu-
merous surveys that discuss Log Anomaly methods in more general. We
have classified these into distinct categories on the basis of their content.

e CIDS Taxonomies: The extensive topic of CIDS allows multiple tax-
onomies to be formulated depending on which CIDS aspect is being
emphasized. The 2015 work by [11] offers a CIDS classification that
is broader than what is used in this paper, with less emphasis on
specific algorithms, but a stronger focus on commercial variants. In
contrast, [8] highlights the role of federated learning in CIDS and
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presents various concepts at a more introductory level, lacking com-
prehensive technical details.

e IDS Surveys: Intrusion detection systems (IDSs) are generally divided
into two primary categories, as we will discuss later. In the survey by
[12], these are further broken down into several subclasses. Further-
more, [13] enumerates different tactics used to avoid IDS detection.

e SoK Publications: The work of [6] provides an extensive overview of
the entire detection system pipeline. However, their primary concern
is about reducing the volume of logs processed by the CIDS, which
diverges from the focuses of this study.

o Log Anomaly Surveys: The study by [9] thoroughly investigates var-
ious deep learning methods to detect log anomalies, although it re-
mains theoretical and does not incorporate IDS practically. Similarly,
[14] discusses different strategies, concentrating mainly on the clus-
tering of different logs.

Our research enhances prior studies in Log Anomaly CIDS by offer-
ing a more detailed categorization of prevalent algorithms. In addition,
we introduce innovative tools, such as our framework, to support the
development of these systems. We assert that the perspective offered in
this paper is distinctive and has not previously been addressed in the
existing literature.

3. Anomaly CIDS

Anomaly CIDS covers an extensive and cross-disciplinary topic. Ini-
tially, this section will clarify the concept of an IDS before diving into
multiple CIDS and highlighting their advantages over IDS in complex
environments. We define Anomaly CIDS as those designed to recognize
anomalies, and Log Anomaly CIDS specifically as those that utilize log
inputs for anomaly detection. Ultimately, we will explore the prevalent
trends within the reviewed literature for this study. This section aims
to provide a thorough overview that extends beyond just Log Anomaly
CIDS, whereas the subsequent sections will focus on examining the al-
gorithms used for detecting log-based anomalies.

3.1. Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDSs) were created to facilitate auto-
mated protection of systems against threats. Their primary role is to
recognize attacks through the examination of data generated by the sys-
tem. IDSs are integrated into a broader framework for analyzing and
evaluating the behavior of the entire infrastructure. Based on the re-
search presented in [6], Fig. 2 illustrates a standard pipeline designed
to collect and analyze logs in multiple IDS algorithms. Similar pipelines
can be found in LogLens [7] and in CIDS approaches [3]. The primary
functions are as follows. First, there is the capture layer, whose funda-
mental role is to gather logs from the system’s various nodes. Next, the
reduction layer processes these logs; as highlighted in [5], the volume of
logs can be excessive, so the critical function of this layer is to sort and
eliminate redundant logs to reduce the burden on the subsequent layer.
However, determining which logs are redundant can be complex and
poor decisions could negatively influence IDS performance. This issue
is beyond the scope of this document; more comprehensive details are
provided in [6]. Following this, the infrastructure layer is responsible for
the storage of the various logs. Finally, at the peak of the diagram, the
detection and investigation layers are found. The detection element is
automatically managed by IDS techniques, while the investigation layer
offers users a platform to track alerts and oversee the system. An ac-
tual example of an open source initiative that follows this architecture
is documented in [15].

As mentioned above, the detection layer enables multiple IDSs to col-
laborate. The literature identifies various types of IDSs. Signature-based
methods excel at identifying known threats, but maintaining their cur-
rency is both burdensome and labor-intensive. In addition, they fail to
detect unknown threats and can be easily bypassed by sophisticated ad-
versaries such as advanced persistent threats (APTs). On the other hand,
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Fig. 2. Generic alert system architecture based on the previous work of [6] and
[16].

anomaly-based IDSs identify deviations from typical system and user
behaviors, allowing them to detect zero-day attacks. However, they are
prone to generate excessive alerts through false positives and duplicates,
which requires alert aggregation strategies to minimize the number of
alerts presented to users [16].

3.2. Collaborative IDS (CIDS)

As technologies like the Internet of Things (IoT) expand, informa-
tion and communication systems have evolved to be more intricate and
decentralized. Consider a typical fog architecture as described in [17],
which includes three main layers for distributed computation as shown
in Fig. 3. First, the IoT layer is primarily used to collect data from sensors
in various locations. Second, the fog layer serves as the connecting ele-
ment of the overall system. Third, the cloud layer hosts the nodes with

Cloud layer

_|...

Cloud
Node 1

Cloud _l |3_

Node K
A Fog layer

Fog | Fog |
| Server 1 ¢ oo |2

V loT layer
loT loT | |
| Device 1 o | Device N 1

Fig. 3. The foundational fog architecture as described in [17] comprises K
Cloud nodes, M fog servers, and N IoT devices. The numbering system organizes
the layers from those nearest to those farthest from the user’s view, assuming
interaction with the IoT devices.
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the highest computational capacity. This fog architecture can operate
on multiple devices located in various global locations. Such a decen-
tralized system does not integrate well with a centralized IDS, which
may encounter issues like scalability or latency. CIDS were developed
to address these challenges. These systems comprise two components:
monitor nodes and analysis nodes. For simplicity, it is assumed that the
capture layer resides in the monitor nodes, while the remaining layers
are located on the other ones. According to [11], CIDS can be catego-
rized into three types:

¢ Centralized CIDS: Their operation is similar to regular IDS, as they
incorporate just one analysis node. Nevertheless, for scalability, they
possess numerous monitoring nodes distributed across the system.

¢ Decentralized CIDS: The system employs a hierarchical configura-

tion among the analysis nodes, with each monitoring node linked to

a particular analysis node.

Distributed CIDS: Generally, it employs a Peer-2-Peer structure

where each node simultaneously performs analysis and monitoring.

Centralized CIDS are susceptible to failure due to their single point
of vulnerability and do not scale as efficiently as other methods. Conse-
quently, this study will not focus on centralized CIDS, as existing liter-
ature on Log Anomaly CIDS assumes that multiple analysis nodes come
into play.

Decentralized systems are generally more challenging to develop
and maintain than centralized systems, introducing unique obstacles for
CIDS that IDS do not encounter. These systems depend on message ex-
changes between various nodes, posing a risk of interception or alter-
ation by attackers. Additionally, when updates are made to the detec-
tion methods utilized in CIDS, not all nodes may be accessible, leading
to nodes running different software versions. As highlighted in [8], a
significant number of such methods in current research employ the Fe-
dAvg [18] algorithm for model training. The Pseudo-code Algorithm 1
describes a generic algorithm for this approach. Initially, it involves sam-
pling N clients (Line 3). If the connection to a node in the sample using
the not_f ail() method is successful (line 4), the node is instructed to per-
form local training and return its local weights (Lines 5-6). These local
weights are then merged through an aggregation process (Line 9). Fi-
nally, all available nodes are updated with the new global weights (Line
12). It is important to note that it is unnecessary for all nodes to par-
ticipate in the training process, but the final model must be updated
for all accessible nodes. In FedAvg, the aggregation function calculates
a weighted average of the weights. The literature presents alternative
aggregation techniques Fed + [19] as well as modifications to FedAvg,
such as DDFef [20]. As noted above, adversaries can intercept messages
sent during the federated learning training process. This can alter the
final model’s performance and potentially create weaknesses in detec-
tion systems that can be exploited. Related literature on these types of
attack is cited as [21-23].

As revealed in the survey by Zhang et al. [24], FedAvg is used in
various disciplines. It is a fundamental training technique in federated
deep learning with proof of convergence [25]. A key challenge in CIDS
applications is the prohibition against transferring data to a central lo-
cation due to privacy concerns. However, training techniques such as
FedAvg eliminate this need, allowing each node to leverage the training
data from other nodes effectively. In an empirical study conducted by
Rahman et al. [26], three use cases were assessed by comparing fed-
erated with centralized CIDS, demonstrating that federated outcomes
can closely approximate centralized performance depending on the data
distribution among nodes, although typically results tend to be infe-
rior. Campos et al. [27] conducted a similar study, evaluating FedAvg
and Fed+ [19] in various dataset distributions, highlighting the criti-
cal role of data distribution and showing that Fed + generally outper-
forms FedAvg. Communication costs can be further reduced in training
by adapting FedAvg variations such as LotteryFL [28], which involves
only transmitting a subset of the model to the central hub according to
the hypothesis of the lottery ticket [29], exemplified in FedLog [30],
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Algorithm 1 Federated learning generic pseudo-code.

1: for round in rounds do

2 Ws, <1 > List of trainable weights
3 for n in sample_nodes(N) do > Sample N clients
4 if n.not_fail() then
5: n.do_train(local_epochs)
6: W s,.append(n.get_weights())
7: end if
8 end for
9: W, « aggregate weights(W's,)
10: for n in Nodes do
11: if n.not_fail() then
12: n.set weights(W,, ;)
13: end if
14: end for
15: end for

a Log Anomaly CIDS. Another example is AMCNN-LSTM [31], where
compressed gradients are transmitted instead of model weights.

4. Literature discussion

As depicted in Fig. 1, this research investigates scholarly articles
using the keywords Log Anomaly Detection (LAD) and Intrusion Detec-
tion Systems (IDS). This section will highlight the unique traits of these
two fields. Our approach used the snowball methodology. We started
by conducting a search on Google Scholar for articles with more than
300 citations dated between 2020 and 2024, or recent works that may
capture the interest of the field. After accumulating a set of approxi-
mately 7 papers, we examined the citations listed in their related work
sections. Those citations deemed essential were included if they formed
the foundation for the authors’ work, were used in their experiments,
or appeared multiple times, specifically more than three, in various re-
lated studies. This approach was repeated until no additional relevant
papers could be found. Articles were considered pertinent and included
only if they demonstrated innovative methods that set them apart from
others. If the method appeared irrelevant or unrelated to the topic, it
was excluded. Furthermore, we included some papers due to their com-
pelling empirical experiments [26] or interesting use cases [32]. LAD
is primarily focused on identifying anomalies in log data, which can
originate from both system malfunctions and cyber attacks. In contrast,
works related to CIDS/IDS generally concentrate solely on anomalies
caused by attacks within various data contexts. It should be noted that
methods from these fields can often be used interchangeably, as illus-
trated by [33], where an LAD method [34] was applied within a CIDS
setting. Table 1 lists the three types of dataset used:

¢ Log Datasets: datasets derived from the system’s generated logs.

* Network traffic Datasets: datasets that examine the transmission of
packages across a network. Most of these fields consist of numerical
values such as byte size, sending time, and others.

« Time series: numerical sequences over time observed in various in-
dustrial contexts.

Table 1
Datasets found in the literature.
Datasets Publications
Log HDFS [40], BGL [41], Thunderbird [41], Hadoop [42], Open-

Stack [42], Rubis [43], Spirit [41], Spark [44] , AIT-LDS [45]

Network traffic NSL-KDD [46], Bot-IoT [47], KDD99 [48], SWaT [49], WADI

[49], UNSW-NB15 [50], TONi_IoT [51], Car Hacking [52]

Time series Space Shuttle [53], Respiration [53], ECG [53], Power de-

mand [53], Gesture [53] Gas pipeline [54], Nyc taxi [55]
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Fig. 4. Distribution of different datasets used in the literature related to publi-
cations on Log Anomaly Detection (LAD) and Intrusion Detection Systems (IDS).

Two additional datasets identified in the literature but not within
these groups include the SEA dataset [35], which is derived from vari-
ous UNIX commands and employed in [36], and MIMIC [37], a dataset
concerning critical care utilized by [38]. Fig. 4 illustrates the distribu-
tion across multiple datasets referenced in the literature. Examining LAD
among log datasets reveals that HDFS, BGL, and Thunderbird serve as
primary baselines in numerous studies. Conversely, CIDS/IDS research
is fragmented across different clusters, lacking a predominant baseline
dataset, which complicates comparative analysis between methodolo-
gies. Notably, only two IDS methodologies are equipped to identify log
anomalies [30,39], indicating a distinct deficit in CIDS/IDS solutions
for log data. Studies that created their own datasets merely as a concept
to showcase their specific method’s performance were excluded from
Table 1 and Fig. 4.
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Fig. 5. Distribution of primary keywords in the literature related to publications
on Log Anomaly Detection (LAD) and Intrusion Detection Systems (IDS).
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We further explore the different methodologies cited in the litera-
ture (refer to Fig. 5), highlighting a divergence between how LAD and
CIDS/IDS publications are distributed. LAD techniques employ contem-
porary Natural Language Processing models, such as transformers and
Large Language Models, in addition to methods based on graph theory.
Conversely, CIDS/IDS approaches tend to opt for broader deep learning
techniques. This pattern is largely due to two reasons: first, as mentioned
earlier, most CIDS/IDS research does not center on log datasets, lessen-
ing the demand for NLP methods; second, nonlog datasets are generally
more straightforward, allowing techniques like Full Neural Networks
(FNNs) to achieve strong results. The methodologies compared are de-
tailed in Tables 2 and 3.

5. Log Anomaly Detection

In the preceding section, we have generally examined various
Anomaly CIDS / IDS systems without diving into the specific techniques
applicable to them. In the upcoming segment, we will offer a concise in-
troduction to logs and explore the different strategies employed by mul-
tiple Log Anomaly Detection methods, as documented in the literature.

5.1. Logs and log events

A log is made up of two main elements: a fixed section and a variable
section. The fixed portion functions as the template for the log message,
while the variable part includes a set of values that change according to
the state of execution. For example:

log = “Connection to 127.0.0.1 was accepted”. 1

The process involves separating the logs into two parts, log = (1, v),
where ¢ represents the template and v corresponds to the variable list. In
many real-world situations, templates are not accessible. Consequently,
logs are managed as string variables instead of tuples. Several parsers
have been created to address this issue, as noted in the literature: [4,90,
91]. These parsers can be described by Eq. (2).

e, (t,v) = parser(log) 2

Where t = “Connection to <*>was<*>” and v=[127.0.0.1,
accepted]. These approaches produce the most probable template and
assign it an event number, also known as a log event e. It is important
to recognize that the parsers are not infallible and cannot ensure that
t*,V*) == (t,V) where (*, V*) is the accurate result. For example, when
using one of the common parsing methods, such as Drain [90], subse-
quent logs associated with the same initial template might be mistakenly
classified under a different template and event number:

log, = “The operation was: successful” ,
log, = “The operation was: Exception in line 25,...”.

3

This occurs because Drain initially segments the logs based on word
count, ensuring that they are not assigned the same event ID, even if
they originate from an identical template. In this paper, we will not
investigate into further specifics regarding the parsers. Nonetheless, it
is essential to grasp the following attributes before transitioning to Log
Anomaly Detection techniques:

e Parsers are not flawless; any mistakes they produce will be trans-
ferred to the Log Anomaly Detection methods that depend on them.

e Parsers such as Drain [90] and Spell [91] are updated in real time,
implying that they undergo continuous modifications. This poses a
challenge for Log Anomaly Detection methods that are updated in a
non-continuous manner, including deep learning techniques.

It should be noted that new parsers that employ LLM techniques are
in development and have the potential to significantly reduce parsing
errors [83,92].
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Table 2
Collaborative and Intrusion Detection Systems publications.
Method Keywords Architecture Dataset
FL-LSTM [36] Semi/supervised, Federated RNN Sea
MCPS FNN [38] Semi/supervised, Federated FNN MIMIC
Multi-Chain AE [56] Unsupervised, Federated CNN Created
DioT [39] Parser, Unsupervised, Federated RNN Created
VLSTM [57] Semi/supervised RNN UNSW-NB15
DeepFeed [58] Semi/supervised, Federated CNN, RNN Gas Pipeline
FIDS [59] Semi/supervised, Federated FNN NSL-KDD
AMCNN-LSTM [31] Unsupervised, Federated CNN, RNN Space shuttle, Power demand, Engine
VAE-LSTM [60] Unsupervised, Federated CNN, RNN Space shuttle, Respiration, Gesture, Nyc taxi, ECG,
Power demand, Gas Pipeline
FSL-SCNN [61] Unsupervised CNN Created, UNSW-NB15
HS-TCN [62] Parser, Semi/supervised CNN Created
FID-GAN [63] Unsupervised FNN, GAN NSL-KDD, SWaT, WADI
VANET-BiGAN [64] Unsupervised, Federated FNN, GAN KDD99
Lockedge [65] Semi/supervised, Federated FNN Bot-IoT
FED-IDS [32] Semi/supervised, Federated Transformer TON_IoT, CarHacking
FeLIDS [66] Semi/supervised, Federated CNN, FNN CSE-CIC-IDS2018, MQTset, InNSDN
FedLog [30] Parser, Semi/supervised, Federated CNN HDFS, BGL
Table 3
Log Anomaly Detection.
Method Keywords Architecture Dataset
DeepLog [34] Parser, Unsupervised RNN HDFS, Openstack
CNN [67] Parser, Semi/supervised RNN HDFS
LogAnomaly [68] Parser, Unsupervised RNN HDFS, BGL
LogRobust [69] Parser, Semi/supervised RNN HDFS
LogTransfer [70] Parser, Unsupervised RNN HDFS, Hadoop, Created
0OC4Seq [71] Parser, Unsupervised RNN HDFS, BGL, Rubis
LogBert [72] Parser, Unsupervised Transformer HDFS, BGL, Thunderbird
NeuralLog [73] Semi/supervised, LLM Transformer HDFS, BGL, Thuderbird, Spirit
LogFlash [74] Parser, Unsupervised, Graph - Created
PLELog [75] Parser, Semi/supervised CNN HDFS, BGL
DeepTralog [76] Parser, Unsupervised, Graph GNN Created
LogGD [77] Parser, Semi/supervised, LLM, Graph Transformer, GNN HDFS, BGL, Thunderbird, Spirit
TransLog [78] Parser, Semi/supervised Transformer HDFS, Hadoop, Thunderbird
GLAD [79] Parser, Unsupervised, Graph Transformer, GNN BGL, AIT, Created
LogGT [80] Parser, Semi/supervised, Graph, LLM Transformer, GNN HDFS, BGL, Thunderbird
LogBD [81] Parser, Unsupervised, LLM CNN, Transformer Hadoop, Thunderbird
LogSD [82] Parser, Semi/supervised CNN HDFS, BGL, Spirit
PreLog [83] Semi/supervised, LLM Transformer HDFS, BGL, Spark
LogPromt [84] Semi/supervised, LLM Transformer BGL, Spirit
SuperLog [85] Semi/supervised, LLM Transformer BGL, Spirit
LogGPT [86] Parser, Unsupervised, LLM Transformer HDFS, BGL, Thunderbird
LogLLaMA [87] Parser, Unsupervised, LLM Transformer HDFS, BGL, Thunderbird
LogTAD [88] Unsupervised RNN BGL, Thunderbird
MetaLog [89] Paser, Unsupervised RNN HDFS, BGL, Thunderbird, Openstack

5.2. Methods

After reviewing the different publications relevant to Log Anomaly
CIDS/IDS and LAD, we classified the methods into three separate groups.
In the following parts, we will describe the different categories using
pseudo-codes and process tables with an example of an anomaly se-
quence as aids.

5.2.1. Sequential-wise Log Anomaly Detection

To the best of our knowledge, this category was the first of its kind
in the literature and is still used today (Algorithm 2). The core concept
involves converting each log entry into an event ID according to Eq. (2)
(Line 5). If an event was not included in the training set, it is deemed
anomalous (Line 6); otherwise, the events are combined into an event
sequence, which is then processed by a model to determine if it is a
normal sequence (Lines 12-13). Table 4 presents an example illustrating
the various outputs produced at each step. The first iterations of this
method can be traced back to publications from the previous century
[93]. In the realm of literature, Deeplog [34] is noteworthy as the first
deep learning model in this category, employing an LSTM [94] with the

subsequent formulation:

Loss = —log(Py(e; | ¢;_1,€;_5, ..., €p)). (€))

Algorithm 2 Sequential-wise Log Anomaly Detection generic pseudo-
code.
: model « load_model()
: logs < [logy,log,, ..,l0g,]
: event_seq « []
: for log in logs do
e,_ < parser(log)
if e & know_events then
return True
end if
event_seq.append(e)
: end for
: event_seq < preprocessing(event_seq)
: output < model(event_seq)
: return is_anomaly(out pur)

> Machine learning model
> Input log sequence

> e € Events

[
PQUYWRNDITRBNE

> Events"™! — Rmm
> Rnxm — RV!XO
> R"™% — {True, False}

—
w N
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Table 4
Example of the intermediate outputs of the steps
in the Sequential-wise methods following Algo-

rithm 2.

Step Sub-Method (optional) Output

Input log,, log,, logs

For loop parser(log,) e
parser(log,) e,
parser(logs) e

Event Seq. [e), e, e5]

Preprocessing  [([e,, e,], e3)]

Model [score,]

Is Anomaly [True]

The model P, is trained to forecast the subsequent event in the se-
quence based on prior events. A comparable approach was employed in
LogBert [72], which utilized a transformer [95] with BERT [96] mask-
ing loss alongside the Deep SVDD hypersphere loss [97]:

Loss = —log(Pylee M |e & M))+ aLgypp, 5)
where:
Lgypp =Ilhprsr — el 6)

Here, M refers to the collection of events that are masked and meant
to be predicted using the observable events. Meanwhile, 4, g5 denotes
the embedding space of a special token, encapsulating the information
of the sequence, and c is the mean of 4, ¢; across all sequences within
the training batch. The authors assert that incorporating both losses im-
proves performance, and the masking loss is more effective than Eq. (4)
for handling log data. Similarly to Egs. (4) and (5), various models
have been developed. LogAnomaly [68], for example, expands on the
DeepLog framework with a template2Doc method to improve seman-
tic retrieval. Similarly, LogTransfer [70] is designed to enable knowl-
edge transfer across different datasets, while OC4Seq [71] combines
two GRUs with SVDD hypersphere loss. In the realm of CIDS, DioT [39]
utilizes a GRU [98] instead of an LSTM, and FedLog [30] employs a
dual-input model, applying unique pre-processing techniques for each
input. Furthermore, there are semi-supervised approaches like PLELog
[75], which uses a probabilistic label estimation method, and LogSD
[82] that incorporates distillation techniques with a framework featur-
ing two encoders and a single decoder.

5.2.2. Embedding-wise Log Anomaly Detection

Sequential-wise anomaly detection techniques for logs are straight-
forward to implement, but present several challenges that embedding-
based approaches aim to tackle (Pseudo-code 3). Firstly, Sequential-wise
methods neglect the information contained within the log messages and
heavily rely on parsers. Moreover, the introduction of new or altered
logs from system updates can dramatically affect the model’s perfor-
mance. Studies such as LogRobust [69] seek to mitigate these shortcom-
ings in anomaly detection. They achieve this by forgoing the use of event
ID numbers and, instead, utilizing the templates obtained by the parsers

Table 5
Example of the intermediate outputs of the steps in the
Embedding-wise methods following Algorithm 3.

Step Sub-Method (optional) Output

Input log,, log,, log;

For loop parser(log;) t
parser(/og,) t,
parser(log;) ty

Event Seq. [t), 15, 151

Emb. Model [emb,, emb,, emb;]

Model [score,]

Is Anomaly [True]
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(Line 6) as model input. This is accomplished through a word embed-
ding layer (Line 9) known as FastText [99], which translates template
words into an embedding space. Subsequently, a BiLSTM is employed
to process the information, with the primary formulation being:

Loss = —10g(Py(y | Ey(t,), Ep(t, 1), ... E,(t0)) )
where:
word€et
E )= idf(word)- FastText,(word). (8
word

We refer to E,(-) as the embedding encoder. Table 5 provides an
illustration of the various steps involved in this approach. Typically,
in many studies, this encoder originates from a pre-existing model
with pretrained parameters, and during training, these parameters ¢ re-
main unaltered. Regrettably, the majority of the techniques adhering to
Algorithm 3 are supervised, which constrains their application as an
IDS element for identifying novel attacks, as indicated in Eq. (7). Anal-
ogous research like NeuralLog [73] operates without a parser and en-
codes logs using a pre-trained Bert model [96], whereas PreLog [83]
is a large language model (LLM) trained on log data, capable of iden-
tifying supervised log anomalies through tailored prompts. Similar
prompt-based LLM methods involve LogPrompt [84] and SuperLog [85].
Alternatively, some strategies use LLMs integrated with reinforcement
learning for fine-tuning instead of relying on prompts, as seen in recent
examples like LogGPT [86] and LogLLaMA [87]. Other approaches that
do not precisely follow this pattern but fit within the same category in-
clude the method widely referenced as “CNN” in the academic literature
[67], which utilizes a trainable embedding layer alongside a basic CNN
framework [100].

Algorithm 3 Embedding-wise Log Anomaly Detection generic pseudo-
code.
1: model < load_model()

> Machine learning model

2: emb_model < load_emb_model() > Embedding model
3: logs « [log;,log,, ..,log,] > Input log sequence
4: event_seq < []

5: for log in logs do

6: _,(t,_) « parser(log) >t € Templates
7: event_seq.append(r)

8: end for

9: emb_seq — emb_model(tokenizer(event_seq)) >

Templates™! — R
10: output — model(emb_seq)
11: return is_anomaly(output)

> Rnxm — R)’IXO
> R™° — {True, False}

An alternative method, LogBD [81], uses domain adaptation be-
tween a target and a source dataset, integrates a Bert encoder [96], and
is trained without supervision using SVDD hypersphere loss (Eq. (6)). It
employs adversarial training, applying gradient reversal [101], to medi-
ate between the target and source datasets and help the generalization
of the model:

©)

Ly = minmax <

IEVhJESaurce [IOg(Dﬁ(fa(Ew(hs))))]+ >
B

Evi,eTarger 108(1 = Dy(f o (E,(h)))]

where f, comprises learnable layers appended to the frozen Bert
model E,, and D; denotes a discriminator classifier responsible for
distinguishing between source and target datasets. The goal of gra-
dient reversal is to confuse the discriminator, thereby hindering it
from discerning the two distributions. The final objective function of
LogBD:

Loss = Lgypp — ALyy,- 10)

LogTAD [88] utilizes a comparable technique, replacing the ar-
chitecture with an LSTM. In contrast, MetaLog [89] adopts a meta-
learning strategy rather than adversarial training to achieve domain
adaptation.
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Code base

log.info(msg1)
if condition_a:
if condition_b:
log.info(msg2)
else:
log.info(msg3)
else:

log.info(msg4)
log.info(msg5)

vV

7\

log1

Graph from code ~ Graph from logs
log1
v 7 J
Ifb
log3 log 4
N\

log 4 log2 log3 ~
| | logs

log5

Logs records

[log1, log4, log5]

> [log1, log3, log5]
[log1, log3, log5]

I Executions

vV

Fig. 6. Example of a graph generations and their main difference between using
the code base and the log records.

5.2.3. Graph-wise Log Anomaly Detection

As demonstrated in previous methods, log data can be addressed us-
ing Natural Language Processing (NLP) techniques. In sequentially-wise,
each log entry is defined by its relationship to other logs, independent
of the intrinsic syntax of the log message. In terms of Embedding-wise,
it also incorporates the information within the log message, with both
approaches handling the data as a sequential chronology of tokens. Nev-
ertheless, NLP problems can also be modeled as graphs [102]. Consider
a series of logs from a deterministic program in which their interde-
pendencies arise from the execution state. These relationships can be il-
lustrated as a graph structure, potentially offering a more sophisticated
problem representation. As shown in Fig. 6, it is feasible to develop a
graph model of a code base using only the sequence of logs of each run.
This graph does not strictly match the structural layout of the original
code base, but maintains logical consistency (for example, /0og3 never
precedes log1). It is important to note that since condition_b was consis-
tently false during executions, /og2 is omitted from the graph generated
by the logs.

Consider defining graphs as G = (V, E), with V representing the
nodes (each event id is symbolized by a node) and E representing the
edges such that E = {(e,e,)|e;, e, € V'}. Fig. 6 illustrates how logs can
be depicted in this manner, enabling the use of graph anomaly detection
techniques for the problem at hand, as detailed in the survey by [103].
The Algorithm 4 presents a standard pseudo-code where T and E denote
the template and event sets, respectively. This algorithm is analogous to

Algorithm 4 Graph-wise Log Anomaly Detection generic pseudo-code.
1: model < load_model()

> Machine learning model

2: emb_model — load_emb_model() > Embedding model
3: logs < [logy,log,, ..,log,] > Input log sequence
4: event_seq < []

5: for log in logs do

6: e, (t, ) « parser(log) >(e€E,teT)
7: v « emb_model(tokenizer(r)) >T - RIxm
8: event_seq.append((e, v))

9: end for

10: graph < make_graph(event_seq) > (e € E,R*) - G
11: output «— model(graph) > G — R™
12: return is_anomaly(output) > R"™° — {True, False}

Future Generation Computer Systems 175 (2026) 108090

Table 6
Example of the intermediate outputs of the steps in the Graph-
wise methods following Algorithm 4.

Step Sub-Method (optional) Output

Input log,, log,, logs

For loop parser(/og,) & emb_model(t,) ey, emb,
parser(/og,) & emb_model(?,) e,, emb,
parser(/og;) & emb_model(r;) e3, embs

Event Seq. [(e;, emb,), (e,, emb,), (e3, embs)]
Make graph [g,]

Model [score,]

Is Anomaly [True]

Algorithm 3 but processes sequences without considering their chrono-
logical order by generating graphs instead (Line 10), an illustration of
intermediate outcomes is provided in Table 6. We can categorize vari-
ous methods within this class based on their approach to constructing
the initial graph:

e Edge formulation: In LogFlash [74], an edge depicts the frequency of
occurrence of various logs, defined as G = (V, E, F), where F; € R
serves as the edge weights. In particular, this approach updates the
graph dynamically, enabling adaptation to changing system condi-
tions.

e Edge-Node formulation: An embedding representation in the graph
can be characterized as G = (V, E, Fy,, Fg), with F;, € R" serving as
embedding vectors. This formulation is common among the majority
of publications in the field:

- Use logs as embedding nodes: In the study by [77], the LogGD ap-
proach utilizes a Bert [96] model to encode the templates, thus
producing the embeddings for each node. In a similar vein, LogGT
[80] was created to facilitate transfer learning between source
and target datasets.

— Use logs and traces as embedding nodes: In DeepTralog [76], the
authors construct a graph from the system’s logs and traces. They
adopted a technique similar to LogRobust [69] to determine the
embedding values assigned to each node. Each word in the log
uses the pre-trained GloVe model [104], and these are subse-
quently combined using a weighted sum using TFxIDF.

- Use fields in each log: GLAD [79] builds a varied graph by em-
ploying Sentence-BERT [105] to generate embeddings for every
node, while using BART [106] to identify fields in each log.

After generating the graphs for various publications, a Graph Neu-
ral Network (GNN) framework is utilized: DeepTraLog employs GGNN
[107], LogGD GTN [108], GLAD GCN [109], and LogGT HGT [110].

5.2.4. Comparsion Log Anomaly Detection

The LAD approaches can be classified according to the categories
listed before. Table 7 provides a brief overview of these categories.
Sequential-based methods, like DeepLog, rely solely on the event ID in
a sequential arrangement, whereas embedding-based methods, such as
LogRobust, utilize the template instead of the event ID, sometimes incor-
porating the log message, as seen in NeuralLog. Graph-based techniques
typically employ a template or message in a non-sequential format, of-
ten including an Event ID to distinguish between different nodes within
the graph.

Table 7

Comparison between the different categories.
Type EventID  Template  Message  Sequential
Sequential-wise Yes No No Yes
Embedding-wise =~ No Yes Maybe Yes

Graph-wise Yes Yes Maybe No
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6. Log dataset

Datasets such as HDFS and BGL are frequently regarded as straight-
forward for detecting log anomalies in academic studies. Research has
shown that heuristic techniques can achieve precision comparable to
deep learning approaches [111], with F1 scores surpassing 98% in BGL
under specific conditions. These datasets were originally designed for
general anomaly detection, not specifically for intrusion detection sys-
tems (IDS). On the other hand, the ADFA dataset was specifically created
for IDS applications [112]. The study points out that while earlier IDS
systems could identify intrusions through command frequency, they fall
short when dealing with contemporary threats distributed across mul-
tiple traces. This indicates that excelling on standard datasets does not
ensure practical effectiveness. To keep addressing these challenges, the
updated AIT version 2 dataset was developed incorporating various sys-
tems and applications [113]. As the development of new software archi-
tectures continues, attacks on these systems will evolve as well. There-
fore, it is essential to consistently create updated benchmark datasets.
Although these datasets can realistically reflect contemporary cyberse-
curity advancements, they risk becoming outdated over time.

6.1. Log dataset generation framework

We propose a different strategy to improve the design of intrusion
detection systems (IDSs) by focusing on direct access and code manipu-
lation to produce accurately anomalies from logs. This approach seeks
to improve the evaluation of new methodologies and enrich the under-
standing of actual data. We emphasize the importance of accurate data
interpretation, making connections to fields such as computer vision,
where examining datasets helps to minimize biases [114]. The open
source framework for generating verification datasets operates accord-
ing to the following steps:

1. Each execution of the framework collects the logs generated by the
method via log.info.

2. The templates and logs from the execution processes the data by seg-
menting the logs into the following features: event ID, log level, time
difference, message, and template used. This streamlined structure
allows to generate datasets that can be applied directly to various
Log Anomaly methods without additional preprocessing.

3. Each dataset embodies a challenge, contains a specific anomaly, and
comprises its own training and testing data.

4. The method can employ the training data to adjust the model, though
altering hyperparameters is not permitted.

5. The test data function as a unit tests: if a method fails to detect the
majority of anomalies, it should be deemed a Fail; otherwise, it is
considered a Pass.

An example of this challenge is described in Pseudo-code
Algorithm 5, which illustrates a script trying to reach a resource. Under
normal circumstances, the script manages to succeed after several at-
tempts, but under irregular conditions, it does not succeed (Line 4). If it
fails, the final log is msg_2 (Line 6) else msg_4 (Line 13). Logging methods
were designed to allow dynamic adjustments to log messages: adding,
removing, or modifying them without altering the code, as described
in [69]. These methods emulate consistent software updates with the
goal of assessing a technique’s robustness against various log versions
derived from the training dataset.

At the beginning of a new project, it is typical for the general in-
formation and communication systems to be developed alongside the
CIDS/IDS as shown in Fig. 7. A particularly concerning in this situa-
tions is the lack of data for training models use in the CIDS/IDS. This
creates a bottleneck because data collection for training and verification
is only possible with nearly finalized software versions. To address this,
established datasets from existing literature are used initially, though
they may not capture specific features needed for the project, such as
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Algorithm 5 Challenge pseudo-code.

1: resource < Resource()

2: i« 0

3: logs.info(msg_1)

4: while not resource.init() do
5: if i >= 10 then

6 logs.info(msg_2)
7 return None

8: end if

9: logs.info(msg_3)
10: sleep()
11: i—i+l1

12: end while
13: logs.info(msg_4)
14: return resource

Project requirements —l

I

development

1
Ii System i
L

N
Ii I_Data Gathering—I >|_Model development—I Ii

juawdojaAap sal/ SAld

Fig.7. Example of a project of a information and communication systems with a
CIDS/IDS use for based detection. Note that Step 2 and 3 can be done in parallel.

certain log attributes [111]. Our framework helps to improve model ver-
ification during early evaluations, prior to obtaining definitive project
data.

6.2. Design challenges

An anomaly is a data point that deviates noticeably from a given dis-
tribution, as mentioned in [115]. We define a challenge as a function
C(N,as_anomaly), which produces N data points classified as normal
or abnormal. This challenge will be executed in an unsupervised set-
ting using a model f(x) that returns true if the data point x is deemed
anomalous and False otherwise. Pseudo-code Algorithm 6 demonstrates
the execution of a challenge C. The process begins with training the
model on Line 2, followed by preparing test sets on Lines 3-4 to deter-
mine the final F1 score. Each challenge must include an anomaly of one
of the following types:

¢ Point Anomalies: occur when a single instance is considered abnor-
mal relative to the rest.

e Contextual Anomalies: occur when an instance appears abnormal
within a particular context.

¢ Collective Anomalies: occur when a collection of instances is con-
sidered anomalous compared to the others.

These anomaly types are based on the work of [115]. As mentioned
earlier, a model that does not identify anomalies is considered inad-
equate in overcoming the challenges. Effective reasoning can demon-
strate that a model will fail to meet a specific challenge, thus eliminat-
ing the need for empirical evaluation. However, this logic should not be
reversed; models frequently use shortcuts in the learning phase [116],
potentially leading to outcomes that do not align with our original
expectations.



A. Garcia Gémez et al.

Algorithm 6 Run challenge C pseudo-code.

1: function RUN_CHALLENGE(N: int)— float
2: 0 « train(f, C(N, False))

3: normal < C(N, False)

4: abnormal < C(N,True)

5: return get_f1(fy(normal), fy(abnormal))
6: end function

6.3. Implemented challenges

We pinpoint several issues or risks highlighted in previous publica-
tions. These were transformed into challenges and are defined as stan-
dard use cases typically encountered in regular programs. Although this
straightforward methodology does not cover all possible issues that an
Log Anomaly CIDS might face, we assert that it sufficiently demonstrates
the framework’s effectiveness, as evidenced in the Results section. The
challenges are grouped into four distinct categories.

6.3.1. Resource access

A class representing a resource that must be accessed by the code.
This class is tailored to simulate sensor behavior, where multiple at-
tempts may be required for successful initialization. Fig. 8 illustrates a
diagram depicting resource challenges 1-3. Green arrows are exclusive
to normal executions, whereas red arrows appear only in abnormal sit-
uations.

¢ Challenge 1: Should the resource remain undiscovered after various
attempts, the loop ends without issuing any confirmation message.
A model is capable of recognizing this anomaly through two meth-
ods: either by noting the sequence length, as normal sequences are
shorter, or by identifying the missing final event ID, which signals
resource initialization.

¢ Challenge 2: Should the resource be initialized, the code will yield

an event ID that confirms it; otherwise, it will provide an event ID

indicating an error. A model formulated to identify event IDs not

present in the training dataset will be successful.

Challenge 3: Similarly to challenge 2, the sequence IDs for both ab-

normal and normal events are indistinguishable, since the logs uti-

lize identical templates. Consequently, only models that examine the

individual log messages are able to identify anomalies.

6.3.2. Load dependencies

Several dependencies are being loaded sequentially, and the time
distribution between these loads varies between normal and abnormal
scenarios.

log 1

No Access
resource

Yes
> log 3

log 2 Yes
No /-\
Try again = Iog 4

Fig. 8. Diagram of the resource challenges. Note that challenge 1 does not have
log 4.
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Fig. 9. Diagram of the challenges 7 and 8.

¢ Challenge 4: All dependencies generally require a similar load time,
but in abnormal circumstances, one of them may take significantly
longer.

¢ Challenge 5: In abnormal cases, the load time of two dependencies
is interchanged.

¢ Challenge 6: The same as challenge 4, but the time difference is
much smaller.

6.3.3. X-Ray machine

Medical devices often exhibit a well-defined behavior. In this study,
our objective is to evaluate the effectiveness of anomaly detection tech-
niques in recognizing these states and identifying operational outliers.
Fig. 9 illustrates the appearance of the diagrams for Challenges 7 and 8.
Similarly to Fig. 8, the red edges are exclusive to abnormal scenarios,
and the green edges denote normal ones.

¢ Challenge 7: The machine operates in either verification or mea-
surement mode, constantly carrying out tasks associated with the
chosen mode. Issues arise when the machine mistakenly performs
functions of the non-selected mode, which can be identified by log
flag statuses and variations in task completion times.

Challenge 8: Initially, the machine is required to execute the verifi-
cation process before proceeding with the measurements. However,
in cases of anomalous behavior, the verification steps are bypassed.

6.3.4. Collaborative setting

CIDS introduce several additional complexities that are not ad-
dressed by traditional IDS. For example, a federated learning approach
might encounter challenges in data imbalance, which can affect its per-
formance. Numerous benchmarks exist in the literature to assess the
efficacy of the model under such conditions [117]. Consequently, we
will focus on various challenges unique to CIDS that are not frequently
discussed in the literature.

¢ Challenge 9: The system comprises three clients that execute iden-
tical code. As each client operates its own parser, the final template
of one client’s output deviates from the others. Models that either
bypass the parser or can adjust the final templates are necessary to
distinguish normal activity from anomalies.

¢ Challenge 10: Similar to challenge 9, three clients are executing the
same code. However, unlike the others, one client was compromised
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prior to the training phase, generating anomalous data within the
training set. Only models that can isolate the compromised client
will successfully identify these anomalies.

7. Results

In order to demonstrate the practicality of employing the framework,
we utilized DeepLog [34] to address several challenges. This approach
is commonly seen as a standard in previous log data research. To our
knowledge, no official version of the DeepLog code exists. However,
multiple implementations are available, and we selected [118] because
it has a high number of stars on GitHub. To facilitate a more robust
comparison in the discussion of results, we implemented two heuristic
approaches inspired by [111]. These approaches illustrate how straight-
forward techniques can outperform a deep learning model in specific
instances. The methods are as detailed below (Algorithms 1, 5 and 6).

¢ Length + Event: Initially, verify whether an event has appeared in
the training dataset before; next, ensure that the sequence length fits
within the range of those in the training sequences. If both conditions
are met, the sequence is deemed nominal; otherwise, it is treated as
an anomaly.

e Time: When the duration of a sequence falls short of or exceeds
the durations present in the training datasets, it is regarded as an
anomaly.

7.1. Experiments setup

We trained the different methods in all the challenges and used the
default HDFS dataset from the Deeplog repository as a reference. Some
hyperparameters were altered from the original DeepLog code:

o For all cases: The batch size was adjusted from 2048 down to 100
primarily because the challenge datasets contain merely 100 cases.
Moreover, the Deeplog implementation allows the test set to be run
using either only the unique event sequences or running through all
event sequences. We decide running all event sequences.

¢ Only for challenges: Given the shorter log sequences and fewer
unique events relative to HDFS, we set the window size to 3 and
limited the model output to 10. In Deeplog’s implementation, a se-
quence is flagged as anomalous if the next log event is not within the
model’s top n predictions. Thus, following this reasoning, we reduce
n from 9 to 2.

The study evaluates models using three different test sets, each con-
sisting of 100 cases, to adequately represent the data distribution. The
goal is to achieve an F1 score of at least 0.7, as identifying all cases as
anomalies yields an F1 score of 0.67. The model was trained three times
per challenge with randomly generated datasets, calculating the average
and standard deviation of the results. The primary aim is to determine
whether various methods pass the challenges, thus, solely performance
metrics are employed. The experiments were repeated with the HDFS
dataset on a system with an Intel Core Ultra 7 165U x14 CPU and 16GB
of RAM. We divided the results into two sections:

e Centralized Setup: we run Challenges 1-8 and HDFS in a centralize
set-up.

¢ Collaborative Setup: The primary objective is to evaluate how con-
ventional FedAvg [18] addresses the challenges. Therefore, we con-
centrate solely on utilizing Deeplog, executing Challenges 9-10 and
HDFS.

7.2. Centralized setup

We separately present the results achieved in Deeplog as well as
those from the heuristics.
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Table 8

Simple approach with the results of the test datasets v1.
Dataset Precision Recall F1 Test
HDFS 0.98 +0.00 0.84 +0.01 0.90 + 0.00 PASS
Challenge 1 1.00 + 0.00 1.00 +0.00 1.00 +0.00 PASS
Challenge 2 1.00 + 0.00 1.00 +0.00 1.00 + 0.00 PASS
Challenge 3 0.00 + 0.00 0.00 +0.00 0.00 + 0.00 FAIL
Challenge 4 0.00 = 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 5 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 6 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 FAIL
Challenge 7 0.00 = 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 8 1.00 + 0.00 0.38 +0.04 0.55 +0.04 FAIL

Table 9

Simple time approach with the results of the test datasets v1.
Dataset Precision Recall F1 Test
HDFS NaN NaN NaN NaN
Challenge 1 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 PASS
Challenge 2 0.00 + 0.00 0.00 +0.00 0.00 + 0.00 FAIL
Challenge 3 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 4 0.86 +0.03 1.00 +0.00 0.93 +0.02 PASS
Challenge 5 0.39 +0.04 0.06 + 0.02 0.10 + 0.04 FAIL
Challenge 6 0.94 +0.03 0.61 +0.01 0.74 +0.02 PASS
Challenge 7 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 8 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 FAIL

Table 10

Simple time approach with the results of the test datasets v2.
Dataset Precision Recall F1 Test
HDFS NaN NaN NaN NaN
Challenge 1 1.00 + 0.00 1.00 +0.00 1.00 +0.00 PASS
Challenge 2 0.00 + 0.00 0.00 + 0.00 0.00 +0.00 FAIL
Challenge 3 0.00 + 0.00 0.00 £ 0.00 0.00 + 0.00 FAIL
Challenge 4 0.88 +0.00 1.00 + 0.00 0.94 + 0.00 PASS
Challenge 5 0.50 +0.10 0.08 +0.02 0.14 +0.02 FAIL
Challenge 6 0.98 +0.01 0.60 +0.03 0.74 +0.02 PASS
Challenge 7 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 8 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL

7.2.1. Results with Deeplog

Table 11 displays the results. Furthermore, we applied the model to
test the datasets using a second version of the challenge code, which
is shown in Table 12. The remaining methodology remains unchanged.
Challenges 4, 5, and 6 consistently have the same sequence of log events,
differing only in execution time. As DeepLog does not account for timing
variations in procedures, it inherently failed these challenges. Further
analysis of these outcomes is provided in the discussion section.

7.2.2. Results with heuristics

The outcomes derived from the Length + Event method are reported
in Table 8, whereas the results associated with the Time method are
displayed in Tables 9 and 10. Due to the absence of time data in the
HDFS dataset utilized for these experiments, the Time heuristics indicate
NaN for this field.

7.3. Collaborative setup

We adapted the existing Deeplog configuration to operate in a fed-
erated setting utilizing the Flower framework[119]. The weight updat-
ing process employed the FedAvg [18] algorithm, which included three
clients, three global rounds, and three local epochs per round. The hy-
perparameters of the centralized version were maintained, with each
client having equal-sized training datasets. The outcomes are presented
in Tables 11 and 12. We also reevaluated the system’s performance us-
ing HDFS datasets to verify reliability. Similarly to [26], the federated
configuration showed lower performance; however, it should be consid-
ered that with enhanced optimization, this performance disparity could
be minimized.
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Table 11
DeepLog model with the results of the test datasets v1. Fed.
HDFS, Challenge 9 and Challenge 10 are part of the Collabora-

tive Setup.

Dataset Precision Recall F1 Test

HDFS 0.96 + 0.00 0.94 +0.01 0.95 +0.00 PASS
Challenge 1 0.0 +0.00 0.0 +0.00 0.00 + 0.00 FAIL
Challenge 2 0.79 +0.01 1.00 + 0.00 0.88 +0.01 PASS
Challenge 3 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 4 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 5 0.00 £ 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 6 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 7 0.87 +0.05 0.84 +0.08 0.86 + 0.06 PASS
Challenge 8 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Fed. HDFS 0.82 +0.01 0.94 +0.01 0.88 +0.02 PASS
Challenge 9 0.67 +0.00 0.67 +0.00 0.67 +0.00 FAIL
Challenge 10 0.75 £ 0.00 1.00 + 0.00 0.86 + 0.00 PASS

Table 12
DeepLog model with the results of the test datasets v2. Fed.
HDFS, Challenge 9 and Challenge 10 are part of the Collabora-

tive Setup.
Dataset Precision Recall F1 Test
HDFS NaN NaN NaN NaN
Challenge 1 0.50 +0.00 1.00 + 0.00 0.67 +0.00 FAIL
Challenge 2 0.50 £ 0.00 1.00 + 0.00 0.67 +£0.00 FAIL
Challenge 3 0.50 + 0.00 1.00£0.00  0.67+0.00  FAIL
Challenge 4 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 FAIL
Challenge 5 0.00 + 0.00 0.00 + 0.00 0.00 £+ 0.00 FAIL
Challenge 6 0.00+0.00  0.00+0.00  0.00+0.00 FAIL
Challenge 7 0.50 + 0.00 1.00 + 0.00 0.67 +0.00 FAIL
Challenge 8 0.50 +0.00 1.00 + 0.00 0.67 +0.00 FAIL
Fed. HDFS NaN NaN NaN NaN
Challenge 9 0.50 + 0.00 1.00 + 0.00 0.67 + 0.00 FAIL
Challenge 10 0.50 +0.00 1.00 + 0.00 0.67 +0.00 FAIL

7.4. Result discussion

Based on the results, while Deeplog achieves strong performance
with HDFS, it struggles with many challenges. Notably, the small win-
dow size of 3 limits the LSTM’s ability to consider more than three pre-
ceding events, thereby constraining the architecture’s capability. Nev-
ertheless, this limitation does not fully account for its difficulties with
various challenges. If we maintain the original window size, the LSTM
merely needs to predict the final events in the sequence, as the sequences
are typically short in these challenges. An approach to addressing this
issue with a larger window size is to incorporate padding at the begin-
ning of the sequence. This perspective highlights the importance of us-
ing challenges from the beginning of the project, as illustrated in Fig. 7.
These discussions contribute to developing more robust models. By iden-
tifying early on which challenges may pose difficulties for the model, we
can adapt or alleviate the risks in the project’s initial phases. We will
evaluate the results of each challenge individually.

o Resource access (Challenges 1-2): In Challenge 1, abnormal sequences
significantly exceed the nominal ones in length. This is identified by
counting the number of events per sequence, as done in the Length +
Events approach, or by measuring the total duration of the sequence
as in the Time method. However, Deeplog struggles to detect these
anomalies. This is primarily because its LSTM-based internal states
focus solely on predicting the next event, neglecting the overall se-
quence structure. It performs better in spotting anomalous events in
Challenge 2, but the Length + Events strategy still achieves a higher
F1 score.

e Resource access (Challenge 3): A key feature of Challenge 3 is the vari-
ability in log entries. In a normal situation, the log concludes with
“Errors found None,” whereas, in an abnormal situation, it reads, “Er-
rors found [’Exception: something unexpected has happened, please
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reboot’].” Despite this, both scenarios share the template “Errors
found <*>” resulting in identical event IDs. Additionally, there are
no temporal or spatial variances that could aid in the detection. This
challenge emphasizes the necessity of examining the variables within
the logs, as sequential methods prove insufficient. None of the con-
sidered methods effectively address this challenge.

¢ Load Dependencies (Challenges 4-6): The effectiveness hinges on eval-
uating the timing of the sequences, rendering the Time heuristic the
only viable option. However, it falls short in Challenge 5 because it
does not consider the time needed to perform each event tuple.

e X-Ray Machine (Challenges 7-8): It is essential to correlate events, a
task that heuristics cannot perform. DeepLog utilizes an LSTM, which
simplifies this task as long as the layer does not exploit a shortcut. By
examining the internal architecture of the layer [94], we hypothesize
that its behavior in this challenge is influenced by the presence of
the forget gate, allowing it to disregard previous inputs. When the
model focuses solely on the most recent event ID, it recognizes that if
it detects a measurement log, subsequent logs should be of the same
type, and vice versa (Fig. 9). This approach succeeds in Challenge
7, but fails in Challenge 8; if a significant portion of the sequence
is suddenly skipped, the LSTM will not detect it. The creation of
Challenge 8, aimed at causing Deeplog to fail, was develop inspired
by the experiments detailed in [116].

e Collaborative setting (Challenges 9-10): The anomalies are quite sim-
ple to understand. The major challenges originate in the federated
process itself. Deeplog does not succeed in Challenge 9 because tem-
plates from different clients are not validated during training. This
problem could be addressed by adjusting the training script. Nev-
ertheless, Challenge 10 is successful because FedAvg efficiently re-
moves anomalous instances from the training data. It is crucial to
point out that although FedAvg can address Challenge 10, it does
not demonstrate its capability to handle more intricate attacks such
as [21,22] and [23].

8. Discussion

We structured our discoveries around three primary research ques-
tions, which were addressed in various sections of this publication. In
this section, we will offer research answers (RA) to these research ques-
tions based on earlier observations.

RQ1: What methods and baselines are used in the literature for
Anomaly CIDS?

RAZ1: In the literature discussion section, we demonstrate that not all
Anomaly CIDS primarily rely on logs to identify system abnormalities.
By examining the baseline datasets used for the evaluation (as shown in
Table 1), we can identify the type of input domain involved. Interest-
ingly, using Log Anomaly CIDS is relatively uncommon, prompting us
to also consider similar LAD techniques to enhance sample distribution.
Based on our research, we determine that the most commonly used base-
line datasets for Log Anomaly CIDS and comparable methods are HDFS
and BGL.

When analyzing the methods used, it is essential to divide them into
two categories. Firstly, under the collaborative framework, as detailed
in the section Anomaly CIDS, we explore different strategies for node
division: Centralized, Decentralized, and Distributed CIDS. In addition,
the literature indicates that the most common method of updating the
local models of the nodes within CIDS is federated learning, with Fe-
dAvg being the most widely used technique, although other methods
are also identified. In the subsequent category, which concentrates on
the algorithm specific to Log Anomaly Detection, various architectures
are shown in Fig. 5. However, recent developments are more effectively
depicted in Fig. 1, which emphasizes the increasing adoption of LLM
and graph-based methods in contemporary Log Anomaly Detection tech-
niques.

RQ2: How can we categorize the different Log Anomaly CIDS
and other Log Anomaly approaches?
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RA2: Earlier works, as noted in the Related Work section, catego-
rizes approaches based on the overarching architecture employed, such
as CNN, RNN, or Transformers. Although this classification may be infor-
mative, we contend that it is not the most insightful point of view. In our
study, we shift the focus by categorizing based on the manner in which
data is processed and the objective function utilized to optimize the
models. By examining these characteristics, we have established three
principal categories:

o Sequential-wise: Each log sequence undergoes a transformation into
an event ID, and the model is optimized by attempting to forecast the
subsequent or masked event in a sequence. This method is relatively
straightforward and requires less computational power. Nonetheless,
merely using event IDs leads to a significant loss of log message in-
formation. Additionally, there is substantial reliance on how logs are
parsed, making this method susceptible to alterations in logs follow-
ing future code updates.

o Embedding-wise: An embedding encoder is employed to analyze the
logs, as opposed to relying solely on the event ID numbers. These
techniques were developed to address the limitations associated with
Sequential-wise methods. However, the majority of methods in this
category are supervised, which poses challenges for their application
in zero-day attacks.

e Graph-wise: Function similarly to the Embedding-wise approach,
but instead of arranging the logs sequentially by chronological or-
der, they are connected as a graph. This technique often involves
greater complexity and necessitates additional steps compared to
other methods.

RQ3: To what extent can we improve the reliability of Log
Anomaly CIDS?

RA3: Creating Log Anomaly CIDS necessitates considering several
elements, such as strategies for anomaly detection and enhancements to
local models. Although federated learning is used to prevent the sharing
of sensitive data between nodes, it generally achieves lower results than
centralized training. Often, initial CIDS designs do not include specific
training and testing datasets, leading to a dependence on benchmark
datasets that might not ensure optimal deployment performance. This
paper introduces an open framework for early evaluation, allowing the
thorough testing of models against various challenges to identify vul-
nerabilities and improve robustness. The framework effectively identi-
fies the shortcomings in current methods, such as DeepLog. Although
this framework proposal and application do not directly provide an an-
swer to RQ3, we believe it represents progress towards developing more
reliable Log Anomaly CIDS.

8.1. Threats to validity

We conducted an empirical assessment of the proposed framework,
concentrating on Deeplog due to its prominence as a standard bench-
mark in the field. Since the framework is offered as a proof of concept,
only a limited evaluation was performed. We recognize that the absence
of additional models and the limited number of challenges pose a threat
to validity. A more comprehensive empirical analysis will be carried out
in future research.

9. Conclusion

This research seeks to provide a comprehensive summary of Log
Anomaly CIDS, emphasizing its main characteristics, prevailing trends,
and obstacles. Furthermore, we have created a novel open-source frame-
work to aid the progress of these systems. Our findings are supported by
numerous recent studies on this subject, demonstrating that only a small
number of Anomaly CIDS rely on logs for anomaly detection. We exam-
ine and classify multiple LAD techniques and offer tools to enhance the
robustness of these systems. We hope that our work will aid the research
and development of upcoming Log Anomaly CIDS.
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In future work, our main aim is to further refine the distinct chal-
lenges of the framework. We plan to achieve this by developing a more
precise methodology to identify a broader spectrum of anomalies and
risks that Log Anomaly CIDS might face. In addition, we intend to intro-
duce challenges on the same subject with varying levels of difficulty to
enhance model comparison. Finally, we will incorporate multiple base-
line datasets to establish a unified testing framework. Additionally, we
aim to investigate alternative metrics for CIDS, such as memory or en-
ergy usage, and assess any potential risks these methods might face in
real world scenarios.
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