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Abstract
Many businesses rely on open-source software modules to build their technology stacks. However, those who lack domain
expertise may struggle to find the right software due to unfamiliar terminology and specific names. As a consequence, search
engines and other platforms often cannot be utilized effectively to discover appropriate solutions. There is thus a need for a
more applicable approach to assist non-domain experts in navigating the vastness of available repositories, enabling them to
efficiently discover and select the right solution for their business needs. To overcome these gaps, we introduce an approach
that supports finding unpopular yet important open-source software repositories on GitHub using advanced machine learning
techniques. For this purpose, we propose novel strategies for information gathering and data pre-processing that resolve
scalability issues of existing solutions and enable clustering of repositories even when topics, descriptions, or repository
names are unclear or absent. For our evaluation, we gathered a dataset of 221,971 repositories using GitHub search and
keywords related to incident detection. We show that our approach is able to separate threat detection repositories from others
with an F1-score of 0.93.

Keywords Threat detection · Usable security · Machine learning · Repository discovery · Topic clustering

1 Introduction

In the last decade, open source software has become an
increasingly important factor in the IT world. Nowadays,
many software applications and frameworks that are or at
least partially base on open source software are widely used
in corporate, public, and academic domains, such as the
Android operating system for mobile phones, the Openstack
cloud computing platform, the Hadoop framework for big
data processing, etc. [1]. Multiple large websites have been
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established to enable collaboration and development as well
as distribution of open source software. Currently, the biggest
player on the market is arguably GitHub, but many alterna-
tive providers such as Sourceforge, CodeCommit, BitBucket,
GitLab, and Google Cloud Repositories recently gained in
popularity.

Possibly as a direct consequence of this issue, the recent
trend of so-called “awesome” lists, i.e., community-curated
lists of links to resources such as GitHub repositories rel-
evant for a specific application domain, has evolved. One
of the largest awesome lists hosted on GitHub is from user
sindreshorhus1 and lists more than 500 contributors. This list
holds links to other GitHub lists in domains such as program-
ming languages, computer science, big data, entertainment,
security, etc., in a structured way.

While awesome lists are a convenient method to obtain
an overview of available projects in common domains, the
problem to find new or less popular repositories remains. In
2017, GitHub integrated so-called topics that allow devel-
opers to categorize their repositories and thereby make it
easier for users to find different repositories belonging to

1 https://github.com/sindresorhus/awesome
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the same domain. While GitHub allows to sort reposito-
ries retrieved for certain topics by criteria such as “most
stars”, “fewest stars”, “most forks”, “fewest forks”, “recently
updated”, and “least recently updated”, it still remains dif-
ficult to find certain repositories as many topics are used
scarcely, while others are too generic [2]. For example, the
topic called encryption2 contains over 7,000 repositories (as
of Sept. 2023), making it hardly possible to identify reposi-
tories that address a specific problem within the encryption
domain, especially if they are not very popular (i.e., have few
stars or forks) and not very active anymore (i.e., have not
recently been updated). However, the most influential fac-
tor with respect to incomplete results obtained from searches
by topic is that GitHub does not require to assign topics to
repositories, in which case the project cannot be found at all.
In course of our experiments we observed that even among
widely popular software projects topics are often missing,
e.g., the widely deployed IDS Snort3 lacks topics. The prob-
lematic situation with topics is further aggravated by the lack
of a unified taxonomy. Specifically, topics are often syn-
onyms or subsets of each other, which drastically limits their
use for classification and retrieval.

An alternative method to find relevant repositories is the
GitHubprovided search.Bydefault, the query keywords used
are only matched on the about, title, and topic section of a
repository. Similar to topics, repositories that lack the fully
optional about section cannot be found through this way. In
course of our research we identified that 68% of the repos-
itories that were returned during our search do not provide
topics and 12% have empty about sections. In contrast, only
1%of the repositories do not include a readme section, which
is thus a promising source of information for retrieval of rel-
evant repositories. In contrast to other approaches, we also
utilize the directory tree and the names of the repositories to
extract keywords, that we later use to find similar repositories
even if they do not have any about section or topics defined.

Our experiments presented in this paper focus on GitHub
repositories for cyber security threat detection. Several pop-
ular security applications such as intrusion detection systems
are widely used in the corporate sector and available as
open source software, while at the same time many forks
of these repositories as well as independently developed
smaller projects and niche repositories exist. In addition,
security repositories are also commonly used to store artifacts
other than software, such as tool configurations, detection
rules, best practices, and so on. This allows us to collect
a diverse dataset of 221,971 repositories comprising many
similar and dissimilar projects that is suitable for evaluating
our approach. To the best of our knowledge, this is the largest
dataset that has been used to evaluate recommender systems

2 https://github.com/topics/encryption
3 https://github.com/snort3/snort3

for GitHub repositories. Moreover, this paper extends the
state-of-the-art by proposing novel strategies to pre-process
artifacts such as readme and about, name, tree and pro-
gramm languages sections in addition to topics. As we show
in the paper, this does not only enable effective retrieval of
similar repositories with machine learning methods such as
HDBSCAN and K-Means, but also addresses the problem
of scalability when applying existing approaches such as
BERTopic [3].We provide the generated dataset and the code
to run our experiments on GitHub4. We summarize the con-
tributions of this paper as follows:

1. An investigation of available artifacts and auxiliary infor-
mation sources in open source repositories,

2. a method to pre-process relevant artifacts and apply
machine learning techniques to retrieve similar reposi-
tories independent from their popularity, and

3. an assessment of the quality of search results for open
source software in the security domain.

The remainder of this paper is structured as follows. Sect.
2 discusses relatedworks in the research area of repositoryfil-
tering and discovery. Sect. 3 provides a conceptual overview
of our proposed approach. We outline our methodology for
collecting a dataset of repositories for experimentation and
evaluation in Sect. 4. Sect. 5 contains an in-depth explana-
tion of our proposed procedure andSect. 6 presents the results
we obtain from applying our approach on the data. We dis-
cuss the results and provide ideas for future work in Sect. 7.
Finally, Sect. 8 concludes this paper.

2 Related work

A considerable amount of research is dedicated to explor-
ing GitHub with data mining techniques. Di Rocco et al. [4]
introduced TopFilter, a tool that aids developers in choos-
ing appropriate topics for their repositories on GitHub. The
TopFilter algorithm employs a graph-based representation of
repositories to identify similar repositories, which are then
used to suggest relevant topics for a specific repository. Top-
Filter builds upon Multinomial Naive Bayesian Networks
(MNBN) [5], which suggests topics based on readmefiles but
is limited to pre-defined topics and assumes that datasets are
balanced. Both approaches were evaluated using the same
datasets, with the largest dataset holding 13,400 reposito-
ries5.

Repo-Topic6 is a feature provided by GitHub that allows
to extract topics using lightweight NLP techniques such as

4 https://github.com/ghml23/ghml23
5 https://github.com/MDEGroup/MNB_TopicRecommendation/
6 https://github.blog/2017-07-31-topics/
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tf-idf. On the other hand, GHTRec [6] suggests personalized
trending repositories using deep learning to predict topics
by leveraging historical commits and trending repositories.
In their latest work, Rocco et al. [7] have presented a new
method calledHybridRec. This approach utilizes a stochastic
network anda collaborativefiltering technique to suggest top-
ics, while also considering readme files, Wiki contents, and
commit messages. Repopal [8] shows similarities of repos-
itories based on readme files and user activities. Widyasari
et al. [2] utilized extreme multi-label learning on a dataset
consisting of 21,000 repositories. They discovered that pre-
vious studies tend to exclude topics that occur infrequently,
but found that these topics actually make up the majority of
the data. In contrast, Bai et al. [9] research GitHub Event
Data to recommend like-minded developers.

In their study, Borges et al. [10] investigated the factors
that affect the popularity of GitHub repositories. They found
a strong correlation between stars and forks, but weak cor-
relations between stars and commits, as well as stars and
contributors. They concluded that the programming language
and application domain have a significant impact on pop-
ularity. In their study, Zhou et al [11] discovered 114,120
projects with 50 or more forks and 9,164 projects with 500
or more forks. They differentiated between social forks,
which involve creating a personal copy, and hard forks,
which involve branching off into a new development direc-
tion. Venigalla andChimalakonda [12] analyzed 1.38million
artifacts from 950 GitHub repositories, revealing that pull-
requests and issues contain substantial information useful for
software documentation.

Distinct from other approaches, our method employs a list
of keywords generated from topics already assigned to repos-
itories. These encompass both popular and unpopular topics,
organically created by users, negating the dependence on pre-
defined dictionaries. We harness these keywords to extract
features, implementing straightforward preprocessing tech-
niques and word matching across various repository fields.
This strategy eliminates the need for added knowledge, man-
ual cleaning, or subjective weighting of keywords. Unlike
other methods focused primarily on identifying topics for
unlabeled repositories, our emphasis extends to pinpointing
similar repositories. To this end, we deploy machine learning
algorithms specialized in discerning repositories that align
with our domain of interest.

3 Concept

Our approach aims to automatically cluster repositories
from an open source sharing platform such as GitHub in such
a way that users are quickly able to locate software from
a specific domain or for a specific problem; in particular,
this should be enabled by providing users with similar open
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Fig. 1 Our approach

source software projects for any given repository. To this end
we propose to extract relevant features from the repositories,
process them using methods from Natural Language Pro-
cessing (NLP), and arrange the repositories into groups with
appropriate clustering techniques.

Figure 1 provides an overview of the steps involved in
our approach. The procedure starts at the top left part of
the figure, which represents a data base such as GitHub that
contains a large number of open source repositories contain-
ing tools, configurations, best practices, IDS rules, hardening
checklists, documentation, etc., for various domains. In a
preparatory stage (stage 0) for evaluating our approach, a
domain expert manually searches these repositories for a
representative sample of projects with known domains; we
assign these domains as labels to the repositories and con-
sider this as the ground truth for evaluation.We point out that
this stage is only required for evaluation and does not need to
be conducted if the procedure is only used to identify similar
repositories without validating the results.

Stage 1 of our approach involves querying the sharing plat-
form with a set of pre-defined queries for a specific domain
such as threat detection and store all gathered repositories in
a data base for easy access. While it is theoretically possi-
ble to carry out the procedure on all available repositories,
the sheer amount of data that needs to be handled renders
this idea practically infeasible for large platforms such as
GitHub. In stage 2 of our approach, topics that are provided
by developers to indicate the problem domain of the software
are extracted from the respective repositories. These topics
are then processed using NLP techniques, including filter-
ing, abstraction, weighting, etc. Our approach addresses the
problem that topics are oftenmissing,misleading, or ambigu-
ous, by also leveraging auxiliary repository data such as the
readme or about sections for descriptive keywords. Eventu-
ally, we obtain one or more datasets containing mappings
between repositories and keywords.
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Stage 3 of our approach centers around clustering of repos-
itories based on their associated keywords. In this paper we
conduct experiments with the well-known methods HDB-
SCAN and K-Means, as well as UMAP as an (optional)
dimension reduction technique. In addition, we present our
results using BERTopic [3], which is an approach that lever-
ages neural networks to extract topics from a large corpus of
documents. Either of these approaches yields a mapping of
repositories to clusters; the idea is that these clusters contain
similar repositories and that users may quickly find related
projects for any given repository within the same cluster.

The final stage 4 of our approach is optional and only used
for validating the results of the clustering procedure. Specif-
ically, we locate the repositories from our ground truth in the
cluster map and determine how many repositories with the
same labels correctly end up in the same clusters, andwhether
clusters with different labels are correctly separated. This
allows us to compute relevant metrics and compare the per-
formance of different clustering algorithms with each other.
Estimating the overall clustering accuracy from sampled data
is necessary due to the fact that thewhole corpus is too large to
be labeled manually in its entirety; at the same time, methods
such as BERTopic are not necessarily reliable and thus not
suited to generate a ground truth. In the following sections,
we discuss each stage of our algorithm in detail.

4 Data set

This section describes the dataset of open source software
repositories used to develop and evaluate our approach. We
first describe how we collected the dataset and then explain
howwe conducted feature extraction and labeling of individ-
ual repositories.

4.1 Collection

Clearly, data quality is a crucial factor for validating an
approach to find relevant and similar projects within a large
corpus of open source software. However, generating a rep-
resentative dataset of open source projects in the security
domain is a non-trivial task as it requires to select a subset
of all available repositories and thus hinges on a very similar
problem that the proposed approach attempts to resolve.

For our strategy to collect such a dataset we therefore
first manually gather a list of 100 repositories in the threat
detection domain by using Google search to locate GitHub
repositories of intrusion detection software. For this purpose,
we consulted our domain experts and gathered a list of known
products in the open source incident detection domain such
as "Suricata", "Snort", "Wazuh", "OSSec", "osquery", and
"GRR". While searching for various tools on Google, we
came across several awesome-lists such as “awesome-threat-

detection”7, which provides tools, GitHub projects, detection
rules, etc., that we included into our initial list if they were
open source repositories. In case that multiple awesome-lists
contain links to the same repositories, we only included them
once. Additionally to Google search we also used GitHub
topics using keywords "ids", "siem", and "detection" to iden-
tify often stared repositories.

A basic search on GitHub for the keyword “security mon-
itoring” only yields around 1,900 results; several of our
manually selected 100 repositories from the security mon-
itoring domain are not among the retrieved results. Our
investigation of the reasons why these repositories are miss-
ing confirmed that only those repositories are retrievedwhere
either the title, topics, or about section are exactly matching
the keywords. By checking the missing repositories from
our initial list we confirmed that they either do not have the
required keywords in the respective fields or are missing the
topics, the about section, or both entirely. Even when topics
are provided in a repository, the lack of a common taxon-
omy of topic keywords make it unlikely to obtain all relevant
repositories. For example, we found that at least the topics
“threatintel”, “threat-intelligence”, and “ti” all relate to the
same concepts, but the set of all related repositories cannot
be retrievedwithout exactly specifying all possible variations
of the keyword threat intelligence.

Aware of these issues, we noticed that most reposito-
ries contain a readme section with a detailed description of
the repository and including the necessary keywords to be
retrieved by the query.We therefore extend theGitHub search
query to also consider the readme section (this is achieved
by entering “in:readme, topics, about, title” in the search
bar) and obtained around 106,000 repositories. Analyzing
these results showed that this time a higher fraction of our
initially selected repositories was retrieved; however, at the
same time, the number of false positives, i.e., repositories that
contain the keywords “security” and “monitoring” in their
readme section but are in fact not relevant for the security
domain, increased as well. While false positives are gener-
ally not desirable, we consider this situation ideal for the
purpose of our evaluation as our proposed approach should
not only identify relevant and similar repositories within a
set of security-related software but instead also be able to
differentiate them from software related to other domains,
which requires a diverse set of projects. While we did not
manually label all false positives, we intentionally included
the broader set of repositories to reflect a realistic and noisy
search scenario. This setup allows our clustering approach
to demonstrate its effectiveness in identifying meaningful
groups of relevant repositories within a diverse and partially
unrelated dataset. In the end, we assembled 24 search queries
such as “ids”, “ips”, “security monitoring”, “nsm”, and oth-

7 https://github.com/0x4D31/awesome-threat-detection
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Fig. 2 Creation date and stars of ground truth repositories

ers, that allowed us to retrieve all of our 100 initially selected
repositories among a total of 221,971 repositories obtained
from the search.8 Note that we limit the search space and
filter out dead forks and inactive repositories by requiring
that retrieved repositories have at least two stars, one fork,
and two followers. Our main intention for this is to omit
“social forks”, i.e., public copys of repositories usually com-
prising minor changes such as feature implementations, that
would introduce a large number of de-facto duplicates into
our dataset [11].

4.2 Ground truth

To evaluate the effectiveness of our clustering approach, we
created a manually labeled ground truth set consisting of
120 repositories from three distinct application areas: 100
from the domain of threat detection (security monitoring)
as described in Sect. 4.1 and 10 each from the penetra-
tion testing and image Optical Character Recognition (OCR)
domains. These sets were selected based on expert knowl-
edge and serve as representative examples to validatewhether
our approach can distinguish repositories with substantially
different functionality and topical focus.

A ground truth that specifies which repositories belong to
the same domain or problem space is essential for quantita-
tive evaluation, as GitHub-provided metadata such as topics
are often too inconsistent or noisy to serve this role. Given
the scale of our dataset (221,971 repositories), fully annotat-
ing all entries was infeasible.We therefore opted tomanually
label a smaller, curated set of 120 repositories. Each reposi-
torywas assigned one of three coarse-grained labels: security
monitoring, penetration testing, or image OCR.

We use the resulting labeled set to validate whether our
clustering approach can group repositories from similar
domains while separating topically distinct projects. Fig-
ure 2 shows the distribution of stars and creation dates for
the ground truth repositories. Interestingly, many selected
repositories have a higher star count than average, which we
attribute to their frequent inclusion in curated lists such as

8 We refer to our GitHub repository for the full list of repositories:
https://github.com/ghml23/ghml23

awesome-lists-further highlighting their relevance and visi-
bility in practice.

To minimize selection bias during the extraction of
the penetration testing and OCR repositories, two domain
experts searched the full dataset using domain-specific key-
word queries (e.g., “penetration testing”, “red teaming”,
“Tesseract”, “OCR”), targeting the same fields used during
collection (e.g., topics, README, description). From the
resulting candidate sets, they randomly sampled 10 reposi-
tories per domain, excluding projects that lacked sufficient
documentation to allow confident labeling.

The threat detection repositories span a diverse range
of project types, including detection rule sets, frameworks,
and standalone tools. In contrast, the penetration testing and
OCR sets are more homogeneous, mostly comprising stan-
dalone tools, lists and documentation. Notably, while OCR
is conceptually distinct from security, overlaps in technical
characteristics (e.g., use of CLI tools, Python code, or shared
keywords like “detection”) make separation non-trivial. The
penetration testing set poses a different challenge, as it
belongs to the broader security domain and shares significant
topical overlap with threat detection, making differentiation
more difficult. This setup allows us to test whether clustering
can capture both broad inter-domain and subtle intra-domain
differences.

We explicitly acknowledge that this manual labeling pro-
cess introduces potential bias. Repository selection, while
guided by consistent criteria and domain expertise, remains
inherently subjective. This subjectivity may affect evaluation
results and limits generalizability. Even for domain experts,
assigning a single definitive label to a repository can be
challenging, especially when software fulfills multiple func-
tions or lacks clear documentation. For example, whether the
osquery project falls under detection or response is debat-
able, and classifications may vary depending on the schema
used.

Alternative classification approaches, such as those pro-
posed by Zanartu et al. [13], categorize repositories by type
(e.g., software, documentation, web libraries). Others, like
Mahn et al. [14], suggest mapping to NIST functions. These
more granular or type-specific schemes can offer value but
also increase complexity and disagreement in label assign-
ment. To reduce such ambiguity, we chose coarse-grained
domain labels, which we consider to be the most objective
and consistent for our evaluation goals.

4.3 Feature extraction

Fromour dataset comprising221,971 repositoriesweextracted
the following features: repository name, about section, asso-
ciated topics, readme section, root directory tree, program-
ming languages (which is automatically estimated byGitHub
based on the files stored in the repository), size, whether the
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repository is archived or a fork, whether the repository has a
Wiki or a download section, the number of open issues, the
dates of creation and last update, and the number of stars,
forks, commits, watchers, releases, and contributors. Most
of these attributes are relatively straightforward to process
as they are categorical values or quantities, except for the
about and readme sections that are written by developers and
designed to be human readable rather thanmachine readable.

Specifically, the readme section is either a markdown-
styled file or plain text and contains highly unstructured
information. For example, rather than explaining the appli-
cation context or the problems solved by the project, many
readme sections mainly provide details on how to install and
build the software (e.g., snort39), contain links to the instal-
lation or user guide and focus on project contributions (e.g.,
suricata10), or provide hardly any textual information at all
(e.g., Bearded-Avenger11 or Securityonion12). Despite the
diversity andhigh complexity of the readme section,we argue
that the provided information in that file is highly relevant for
project discovery as outlined in Sect. 4.1 and thus propose
to apply advanced machine learning techniques on that data.
We will go into detail on this matter in Sect. 5.

5 Approach

The goal of our approach is to be able to group and sort open
source software repositories from the domain of threat detec-
tion by their similarities. To this end, we need to pre-process
the features described in Sect. 4.3 in such a way that they
are suitable to be represented in a data structure that enables
similarity-based comparison. We achieve this by applying
techniques from natural language processing (NLP), dimen-
sion reduction, and clustering algorithms. The ground truth
dataset with 120 repositories is used separately for evaluation
purposes and not part of our approach.

In the remainder of the paper, we use the term keyword
to refer to relevant textual features (e.g., topic labels, readme
tokens) extracted fromGitHub repositories.When these key-
words are vectorized for machine processing, we refer to
them as terms in the feature matrix.

5.1 Pre-processing

This section provides some insights into the dataset using
methods from natural language processing (NLP). Based on
the findings, we then outline our strategies to pre-process the
dataset and derive several evaluation datasets.

9 https://github.com/snort3/snort3
10 https://github.com/OISF/suricata
11 https://github.com/csirtgadgets/bearded-avenger
12 https://github.com/Security-Onion-Solutions/securityonion

Analysis of the dataset. Despite the facts that topics are
often missing (only 31% of the repositories in our dataset
use topics) and have no common taxonomy as stated in the
previous sections, they still provide a source of information
that can be useful to assess the similarities of repositories.
Investigating the topics in our dataset shows that the most
common topics are python, deep-learning,machine-learning,
computer-vision and javascript. In some cases there is also a
version number appended to words that represent technolo-
gies, such as python3, which is also within the top 20 of most
used topics.

As a first step we tokenize topics comprising multiple
words. However, manually investigating the results quickly
showed that separating composite words such as “threat-
detection” into “threat” and “detection” is not desirable as
the combination of these words is a better indicator for the
purpose of the repository than the separated words. One
approach to deal with this situation is the use of bigrams [15],
however, we refrain from this idea as it introduces high com-
putational complexity in a large dataset. Instead we preserve
the information of composite words by combining them into
oneword and removing the hyphen, e.g., “machine-learning”
is transformed into “machinelearning”.

State-of-the-art NLP techniques also usually remove any
words below a given character count. Given that some of
our topics are made up only of two or even a single char-
acter (e.g., the programming languages “C” and “R”), we
omit this step. Another common pre-processing technique
that is tricky to apply in our situation is lemmatization, which
aims to merge different words with the same or very similar
meaning into a single one, thereby improving comparabil-
ity. Our experiments showed that the ntlk13 lemmatizer used
with stemming replaces frequent and highly relevant topics
such as “ids” and “ips”, which are abbreviations for intru-
sion detection/prevention system, with “id” and “ip”, thus
incorrectly changing their meaning. We, therefore, proceed
without stemming. Other than tokenizing, we do not modify
or remove any topics retrieved from the dataset, including
fixing spelling errors, validating topics for certain reposito-
ries, or filtering outliers. In total 93,055 unique topics were
used, while 58,849 (63.24%) of them are only used in one
repository.

Other than topics, around 99% of repositories include
readme sections,making theman essential source of informa-
tion to determine the purpose of repositories. After a review
of our initial set of repositories, it is apparent that many
readme sections are written in markdown language and con-
tain HTML code, along with code examples. Additionally,
some sections may involve languages other than English.We
filter out all markdown code, HTML code, and web links to
pre-process the readme sections. We then check the first 200

13 https://www.nltk.org/_modules/nltk/stem/wordnet.html
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words of the readme section against an English dictionary to
validate their language. The results show that around 95% of
all repositories included at least 50% of words that are either
English or topics assigned to that repository. Carrying out
the same procedure for the about section shows that around
88% of all repositories have an about section, with almost all
of them (in total 86%) written in English or coinciding with
the topics. These results confirm that English is the dom-
inant language across repository metadata, supporting our
focus on English keywords and the use of English-language
during preprocessing.

Generation of evaluation datasets. To investigate the
influence of the various aforementioned pre-processing
strategies applied on the data, we create nine separate key-
word lists from the original dataset comprising 221,971
repositories.

Table 1 summarizes the keyword lists leveraging only top-
ics of repositories. Note that repositories without any topics
are excluded, which means that some of the 120 labeled
repositories that make up our ground truth are missing. As
outlined in the table, for keyword list we apply a combi-
nation of pre-processing strategies including tokenization
(T ), lemmatization (L), and removal of hyphens in com-
pound words (C). Except for D_T1, which remains entirely
unchanged, we also eliminate so-called stopwords during
tokenization (T ) with little relevance to any specific topic,
for example, words such as “I”, “there”, “and”, etc.. Impor-
tantly, hyphen removal is applied before tokenization. This
step replaces hyphenated compound words (e.g., “network-
based”) with merged forms (e.g., “networkbased”), which
are then preserved as single tokens. As a result, applying C
can significantly increase the number of distinct keywords,
as it introduces many new variants not otherwise tokenized.
This explains why D_T4, which applies both C and T , con-
tains more than twice the number of keywords compared to
D_T3, which only applies T .

Moreover, we apply a filtering strategy that neglects infre-
quent topics. The main idea is that a reduced set of keywords
results in smaller datasets and therefore less computation
required. Further we argue that topics that occur in several
repositories are better suited for grouping them than those
that occur only in few or even only a single repository. We
therefore generate D_T6 to only include repositories with
common topics that are present in at least rmin (minimum
repositories) of repositories, where we select rmin = 34
(0.005% of repositories with topics) for our experiments.

We further use the list of pre-processed topics derived
from all repositories as keywords, to determine whether any
keywords occur in the readme, about, tree, and name sec-
tions of the repositories. Note that the readme section has
been cleaned as previously described Sect. 5.1 by filtering
markdown and html code.

Table 1 Keyword lists created from topics

Name C T L rmin #Keywords

D_T1 0 93,053

D_T2 � � 0 43,131

D_T3 � 0 44,924

D_T4 � � 0 89,406

D_T5 � � � 0 88,364

D_T6 � � � 34 1,567

D_C1 � 4 9,652

D_C2 � � � 4 14,653

D_C3 � � � 69 773

Since the total size of a dataset largely increases after
incorporating the readme section as a source of keywords, it is
necessary to leverage rmin to reduce the number of keywords
and eliminating irrelevant ones that are not shared among
sufficiently many repositories. In Tab. 1 we list the number
of keywords matched against the input fields, while rmin =
69 (0.01%) yields only 773 keywords. The values for rmin

were empirically determined based on the observed topic
frequency distribution, in order to retain sufficiently common
topics while excluding sparse or noisy ones.

To clarify the construction of our evaluation datasets, we
distinguish between two types: D_Tx and D_Cx. The D_Tx
datasets are filtered based solely on GitHub topics. Specifi-
cally, we apply a minimum repository count threshold rmin

to retain only those topics that appear in at least rmin repos-
itories, under the assumption that frequently used topics are
more reliable for grouping. In contrast, theD_Cx datasets are
based on content-derived keywords, which are extracted from
multiple metadata sources (e.g., README files, repository
titles, and directory trees). These keywords are vectorized
using CountVectorizer, and a minimum document fre-
quency threshold d fmin is applied to reduce dimensionality
and remove infrequent terms.

5.2 Dimension reduction

The evaluation datasets described in the previous section
comprise unstructured data, specifically, lists of topics and
words derived from the various sections. While these words
are semantically expressive, they are intended for human
rather than machine consumption. We therefore need to
transform the unstructured data into a format that is eas-
ier to process by clustering algorithms. To this end we use
CountVectorizer14 to generate a term frequency matrix for
all words in all sections. Thereby, we select a minimum

14 https://scikit-learn.org/stable/modules/generated/sklearn.
feature_extraction.text.CountVectorizer.html
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Fig. 3 UMAP HDBSCAN Cluster labels on dataset of extracted D_C2
keywords on readme

document frequency (d fmin) of four to omit those key-
words that only occur in few repositories and are therefore
deemed irrelevant, which reduces the number of features to
a more manageable size for further calculations. We chose
d fmin = 4 to avoid instabilities and crashes due to mem-
ory limits on our laboratory machine. In the resulting term
frequency matrix, each row represents a repository, each col-
umn represents a distinct keyword, and each cell stores the
number of times a specific keyword appears in the respective
repository. For example, the matrix generated for the D_C2
dataset is 221,971 by 14,653 in size.

To reduce the dimensions of this matrix, we use Uni-
form Manifold Approximation and Projection (UMAP),
which captures complex nonlinear structures present in high-
dimensional data and projects themonto a lower-dimensional
space. UMAP excels at preserving both global and local
structures within the data, striking a balance between main-
taining neighborhood relationships and capturing broader
patterns [16] compared to traditional techniques such as T-
distributed Stochastic Neighbor Embedding (T-SNE) and
Principal Component Analysis (PCA). When estimating
manifold structures of data, we use a 2-dimensional repre-
sentation with a minimum distance of zero (meaning that the
repos are as close as possible) and 30 nneighbors to exam-
ine larger neighborhoods. Overall, this strategy allows us to
harness the advantages of UMAP’s ability to preserve intri-
cate structures while accommodating the nuanced nature of
GitHub repository data.

5.3 Clustering using HDBSCAN and K-means

Our experiments to group repositories by similarity revolve
around two different clustering algorithms: Hierarchical
Density-Based Spatial Clustering of ApplicationswithNoise
(HDBSCAN) [17] andK-Means [18]. HDBSCAN is a strong
density-based clustering algorithm that can uncover clusters
of various shapes and sizes in the data. It automatically iden-
tifies the number of clusters and detects noise points, making
it the ideal choice for identifying intrinsic patterns in our
GitHub repository datasets. We applied HDBSCAN to the
transformed data and obtained clusters based on local density
variations. These clusters helped us identify repositories that
share similar characteristics and discover cohesive groups
within the dataset.

To explore the structure of the data further, we also apply
K-Means, a popular partitioning algorithm, on the trans-
formed dataset. We additionally apply K-Means directly to
the original data without UMAP’s dimension reduction to
investigate the impact of dimension reduction on clustering
outcomes. In Sect. 6.1, we compare the results obtained from
HDBSCAN and K-Means (with and without the UMAP-
transformation) to evaluate the quality and coherence of the
obtained clusters, the distribution of repositories across clus-
ters, and the interpretability of the resulting groups.

5.4 Topic extraction with BERTopic

We further apply BERTopic [3] algorithm in its default con-
figuration to analyze twodatasets: (i) topics section according
to D_T2, (ii) readme section using keyword list D_C2. We
leverage BERTopic to extract and uncover underlying top-
ics within the dataset, shedding light on latent patterns and
themes. We compared the results of BERTopic with our
manual approach, which involves extracting and labeling
topics based on domain expertise, to determine its effective-
ness. The purpose of this assessment is to demonstrate the
algorithm’s capacity to independently distinguish significant
clusters and topics that follow patterns identified by humans.
We present the results in Sect. 6.2.

6 Comparative analysis and insights

This section presents the results of our applied clustering and
topic extraction algorithms.

6.1 Clustering using HDBSCAN and K-means

In this section we compare the resulting clusters generated
by HDBSCAN and K-Means, and assess the influence of
UMAP on the K-Means clustering. This comparison enables
a better understanding of the GitHub repository landscape,
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in particular, allows to investigate whether software projects
are relatively distinct and form many diverse and easily dis-
cernible clusters of fewor even single repositories, orwhether
few comparatively large clusters exist that correspond to
specific types of repositories, such as code, documentation,
awesome-lists, etc. The goal of this investigation is to be
able to determine whether the resulting clusters support users
in exploring similar repositories and subsequently enabling
more informed decision-making for software discovery and
recommendation.

For objective and quantitative evaluation of these tasks we
compute precision, recall, and F1 score based on our ground
truth of 120 labeled repositories. As outlined in Sect. 4.2,
our labels differentiate between repositories from the secu-
rity monitoring and penetration testing domain as well as
repositories related to image OCR. We consider a cluster-
ing as good if many of the repositories with the same labels
end up in the same clusters, while at the same time repos-
itories with different labels should not end up in the same
clusters. Note that the actual number of clusters generated
for the data is only of little relevance for the use-case of
finding similar repositories, and anyway cannot be known
beforehand. Given these requirements, we opt for the idea
to count all possible pairs of repositories as described by
Schütze et al. [19]. In particular, this means that a pair of
identically labeled repositories in the same cluster counts as
a true positive (TP), a pair of identically labeled repositories
in different clusters counts as false negative (FN), a pair of
differently labeled repositories in different clusters counts as
true negative (TN), and a pair of differently labeled reposito-
ries in the same cluster counts as false positive (FP). Based
on these measures, we compute precision or positive predic-
tive value PPV = TP

TP+FP , the recall or true positive rate

T PR = TP
TP+FN , and the F1 = 2·PPV·TPR

PPV+TPR .
Table 2 displays the outcomes of applying the various

keyword lists described in Tab. 1 on various sections of a
GitHub repository. In particular we examined sections top-
ics (T), about (A), readme (R), name (N), description (D)
and languages (L). We only list the best result (F1 score) of
each run (different cluster sizes) on a particular dataset when
it exceeds 0.5 true positive rate and 0.5 true negative rate.
We sort the results depending on the F1 score. Next to pre-
cision, recall, and F1 score, the table states the total number
of clusters as well as the number outliers (A.) in percent, i.e.,
repositories that are identified as too dissimilar and therefore
not assigned to any clusters, from the entire dataset as well
as the ground truth (GT).

We also provide the percentage of repositories with
assigned cluster labels (L.) in both the entire dataset and
the ground truth. For instance, the first line shows that using
the D_C2 method and keyword list on the topic, about, and
readmefields results in 98.36%of repositories being assigned

a cluster label, and 100% within our ground truth. This is a
stark contrast to the best-rated result utilizing D_T2, applied
only to the topic field, which labels a mere 31.45% of the
dataset, as fewer than a third of repositories have any top-
ics assigned. The high labeling percentage using D_C2 can
be attributed to the fact that nearly all repositories have a
readme containing at least one of the extracted keywords. In
the absence of such keywords, there is no information avail-
able for assigning a cluster label.

It is crucial to highlight that the accuracy in Tab. 2 is not
adversely affected when a repository is unlabeled or iden-
tified as an anomaly. Consequently, our keyword extraction
andmatching strategy demonstrates improved clustering per-
formance in our experiments, benefiting from the additional
features extracted from various metadata fields. While these
results indicate potential for enhancing repository discovery,
further validation through user studies and expert feedback
is needed to assess real-world utility.

When applied on a large dataset with many features,
UMAP in combination with HDBSCAN outperforms all
other methods and delivers almost perfect results. Our
approach achieves a recall of 96% and precision of 90%,
with only 2.5% anomalies.

This means that there are none or hardly any repos-
itories that are incorrectly grouped in the same cluster,
indicating that the approach was able to successfully sep-
arate security monitoring software from repositories dealing
with penetration testing and image detection. An important
observation that can be made from this table is that clus-
tering based only on topics and not considering additional
sources of information such as readme and about sections
yields comparatively poor results, e.g., UMAP combined
with HDBSCAN achieves the best clustering accuracy of all
topic-based datasets on D_T2 but yields only an F1-score of
84%. Another insight is that K-Means is generally unable
to compete with HDBSCAN as the highest achieved F1-
score is only 77% when applied on D_T3. It is important to
note that while K-Means yields higher F1-scores on D_T3,
D_T4, and D_T6 on just the topics, the omission of repos-
itories without topics from these datasets, evident from the
lower number of labeled repositories, means that several rel-
evant repositories cannot be retrieved at all. This limitation
is not reflected in the precision, recall, and F1-score met-
rics, which only consider the available (i.e., topic-annotated)
repositories. Accordingly, we determine that while K-Means
is unable to yield good results on the topic-based datasets
as well as the datasets with combined attributes, good results
can be achievedwhen usingHDBSCANon complex datasets
containing information from readmes and about sections in
addition to topics.
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Fig. 4 Example of BERTopic extracted topic clusters

6.2 Topic extraction with BERTopic

Note that HDBSCAN assigns all repositories that deviate
too much from the overall distribution in a separate outlier
cluster. K-Means on the other hand assigns all repositories
to clusters; however, UMAP might disconnect some of the
vertices resulting in isolated repositories that cannot be clus-
tered and are thus also considered as outliers. This is why
UMAP in combinationwithK-Means shows lower “L. Total”
and “L. GT” values even in D_C1-6 where repositories are
not omitted due to their lack of topics. Note that only those
repositories of the ground truth that were not identified as
anomalies are considered in the calculation of our evaluation
metrics. The reason for this is that these repositories are not
clearly associated to any class and thus difficult to integrate
in the evaluation metrics.

Manually analyzing the results showed that some reposito-
rieswith the same label formseparate clusters that are specific
to certain problems, e.g., configuration files of security solu-
tions likely have inherently different repository structures
or contents than SIEM systems. This may lower precision
and recall when very fine-grained labels are used, but should
not affect our evaluation that relies on more coarse-grained
labels.

Figure 3 shows the resulting cluster maps of HDBSCAN
with UMAP applied on readme using D_C2, which are
projected on a two-dimensional plane, where each point rep-
resents a repository and is colored according to the associated
cluster. We also visualize the repositories from the ground
truth in the plots, where triangle shapes represent repositories
corresponding to the threat detection label, yellow diamond
shapes highlight penetration testing repositories and blue dia-
mond shapes correspond to repositories in the image OCR
domain.

BERTopic allows us to identify clusters that are more
complex than the ones produced by the clustering mecha-
nisms from the previous sections, thereby providing a more
elaborate view on the underlying data patterns. Specifically,
BERTopic provides a list of topics and their respective rele-

vance for a topic cluster. Figure 4 illustrates four exemplary
sample clusters.

Since topics identified by BERTopic are more specific
than the labels we used to categorize repositories, we found
that there is only a low correspondence between these two
schemes. For example, BERTopic detected 709 topic clusters
in D_T2, while our clustering approaches yield only 8-13
clusters (cf. Table 2). As a consequence, applying our vali-
dation method on the BERTopic clusters resulted in a poor
F1-score of 0.19, with perfect precision of 1 but a low recall
of only 0.01.

When running BERTopic in default configuration HDB-
SCAN is utilized, which results in 25,299 outliers in the
entire dataset and 33 in our ground truth (D_T1 on topics).
However, as indicated in Fig. 4, topic cluster 5 primarily cor-
responds to repositories related to image OCR; eight out of
the ten image OCR repositories from out ground truth ended
up in this cluster, while the two remaining ones were not
assigned to any clusters and thus count as outliers. More-
over, 13 repositories labeled as threat detection repositories
according to our ground truth correctly end up in the threat
intelligence/threat hunting topic cluster 8. Topic 1 corre-
sponds to the penetration testing cluster with 5 repositories
correctly assigned to this cluster. When executed on the
readmedataset extractedwithD_C2,we identified 63outliers
in our ground truth and 33 clusters, each containing only one
to two repositories. The runtime escalates, increasing seven-
fold to 121 minutes. These outcomes are impractical for our
needs.

7 Discussion

Our objective was to identify repositories in the threat detec-
tion domain, prompting us to turn to GitHub, the world’s
largest open-source software code base. However, this jour-
ney was not without significant challenges. Initially, we
were confronted with the stark limitation of finding similar
repositories or those belonging to a specific domain. Uti-
lizing common search queries in this domain often yielded
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an overwhelming number of repositories, underscoring the
inadequacy of the search functionality. Although GitHub has
introduced the "topics" feature, allowing creators to classify
their repositories, this did not entirely mitigate the issue. Our
attempt to leverage topics for clustering similar repositories
led us to create a dataset comprising 221,971 repositories,
curated through approximately 22 search queries with key-
words commonly associated with security monitoring and
threat detection.

Yet, a notable observation was that only a third of these
repositories had topics assigned.Moreover, there is an incon-
sistency in the topics even among similar repositories. For
example, the “Suricata”15 repository lists the keywords “ids”,
“ips”, “nsm”, “threat-hunting”, and “intrusion-prevention”
system as topics. At the same time, the about section
describes Suricata in the written form of “nsm” (network
security monitoring) and does not mention any of the abbre-
viations “ids”, “ips”, or “nsm”. Also, the keywords threat
or hunting only occur as a topic but not in readme or about
sections. These findings indicate that abbreviations and syn-
onyms as well as a non-uniform taxonomymake it difficult to
find similar software. To navigate this challenge, we devised
amethod to glean information fromother repository artifacts.
We utilized an extracted set of keywords, rooted in the top-
ics already assigned within our dataset. This strategy proved
successful, enabling us to extract features from 98.36% of
all repositories in the dataset.

In our experiments, we were able to seperate threat
detection repositories from image OCR (Optical Character
Recognition) and penetration testing repositories. Remark-
ably, our method yielded results with a higher accuracy than
could be achieved by relying solely on the topics assigned by
the repository creators. For example, upon manually verify-
ing the cluster labels derived from the extracted features of
the readme section using D_C2, it became apparent that the
separation of penetration testing repositories into a distinct
cluster was more effective (up to 50%) compared to using
only topics and D_T1-6. The most detailed results, with 64
clusters, were obtained by employing the smallest keyword
list across various sections including about, readme, name,
tree, and language still achieving a 0.89 F1 score but with
an increased number of anomalies within the ground truth of
16.44%. Yet when applied to topics and readme D_C3 still
achieves very good results.

This is encouraging, as the dataset extracted using D_C3
on the readme is 3.4 times smaller compared to that extracted
using D_C2. Cluster runs vary in duration, taking anywhere
between 1-9 seconds depending on the cluster size, for HDB-
SCAN or K-Means when executed on UMAP embedding,
which itself takes approximately 600 seconds (D_C3). This
is in contrast to the 5-10 seconds forHDBSCAN, 1-3 seconds

15 https://github.com/OISF/suricata

for K-Means, and 850 seconds for UMAP alone (D_C2). All
tests were conducted on hardware equipped with an 8-core
i9-9900k and 32GB RAM. It is notable that K-Means, when
executed without UMAP, is markedly impacted by the clus-
ter/dataset size, requiring up to 950 seconds per run. One run
of BERTopic on readme using D_C2 takes 7200 seconds,
which ismore than 8 times longer thanHDBSCAN+UMAP.

These runtime comparisons indicate that our approach
can be scaled to larger repository sets while remaining
computationally efficient. Compared to transformer-based
methods such as BERTopic, which required up to 121 min-
utes on the same dataset, the combined use of UMAP with
HDBSCAN or K-Means offers improvements in runtime
while still producing meaningful clusterings. Nonetheless,
future work could incorporate a more systematic perfor-
mance evaluation, including memory profiling and scala-
bility testing. The poor runtime and clustering behavior of
BERTopic are likely due to the combination of long infer-
ence times for transformer-based embeddings and the noisy
nature of README texts. Future work could investigate
lighter or domain-adapted embeddingmodels, pre-clustering
techniques, or more aggressive topic merging strategies to
improve BERTopic’s usability in large-scale code repository
analysis.

Our evaluation confirms that our approach of using popu-
lar topics to extract keywords that can be used for finding
similar repositories is promising. Consider, for example,
“snort3” and “Suricata”. Both repositories contain actively
maintained open source software and are de-facto standard
software for network intrusion. The only difference is that
the “snort3” repository does not have any topics assigned
by the authors, nor does it provide an about section. There-
fore it cannot be found with the default search using GitHub,
which does not search within readme sections. It is therefore
necessary to apply strategies for topic extraction as outlined
in this paper as well as similarity functions such as Jaccard
(J (A, B) = |A∩B|

|A∪B| ) on the sets of extracted keywords A and
B of both repositories respectively.

We tested the Jaccard similarity on the aforementioned
repositories from different versions of our datasets and
found that the achieved scores differ depending on the pre-
processing methods applied on the data. For example, in
D_C2 the repositories yield a Jaccard similarity of only
0.2, while in D_C3, which contains a more restricted set of
common keywords that appear in a minimum amount of 69
repositories, they yield a similarity of 0.31. This effect can
be explained by the fact that Jaccard similarity is known to
suffer from limitations when analyzing uneven, lengthy, and
unstructured text files. As a consequence, longer texts may
exhibit inflated similarity scores due to the sheer number
of unique keywords. Nonetheless, Jaccard similarity allows
to find highly similar repositories. When calculating Jac-
card to every other repository in the dataset utilizing D_C3
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we find the following three repositories as most similar to
snort3: Autosnort316 (0.39), snort3_extra17 (0.375), Code-
ExecutionOnWindows18 (0.372). While the first two results
are excellent matches, CodeExecutionOnWindows focuses
on attacking rather than detection, but share some keywords
(shell, detection, log, ...). This is just one example of the dif-
ficulty of separating penetration testing from threat detection
repositories.

Future work can involve refining natural language pro-
cessing models to distill a clearer representation of a
repository’s objectives and problem-solving capabilities. The
results of BERTopic are promising, and further refinements
can be made in the future. Using its default configuration
did not meet our expectations due to an enormous num-
ber of outliers and overly fine clustering, resulting in the
largest cluster in our ground truth comprising only 2 reposi-
tories. To achieve results akin to our requirements, careful
tuning and additional research are necessary. We expect
that the development of comprehensive synonym databases
and clear taxonomies could significantly refine the preci-
sion of our topic recommendation framework. Furthermore,
incorporating expansive language models like GPT-3.5 [20]
might enhance the accuracy and depth of our topic extrac-
tion even further. Our approach suggests several potential
enhancements. Strategies such as stopword extraction, topic
weighting, topic cleaning, and spell-checking can improve
the precision and relevance of our topic recommendations.

Evaluating repository quality is vital. Though stars and
forks offer insights, their potential bias andvulnerability risks
underscore the need for a comprehensive assessment frame-
work beyond conventional metrics.

ThoughvariousGitHub topic recommendation approaches
exist (cf. Sect. 2), none are implemented on the plat-
form. Our paper introduces a method enabling users to find
similar repositories, even without pre-defined topics or key-
words. Initially aimed at distinguishing security monitoring
repositories, the approach shows promising signs of gen-
eralizability across domains. Our evaluation considered the
impact of parameters like similarity thresholds on clustering.
Higher similarity settings offered finer clustering.

Crawling GitHub is time-consuming, and with the grow-
ing number of public repositories, a more efficient search and
recommendation engine is needed. Current API limitations
hinder the extraction of comprehensive user contribution
data, yet such information could enhance repository simi-
larity measures and improve recommendations.

16 https://github.com/da667/Autosnort3
17 https://github.com/snort3/snort3_extra
18 https://github.com/pwndizzle/CodeExecutionOnWindows

8 Conclusion

In this paperwe present an approach that is highly effective in
separating security monitoring from penetration testing and
image OCR repositories on GitHub. By leveraging a set of
commonly used topics to extract keywords from various sec-
tions of each repository, including the title, about, readme,
tree, and topics, we are able to accurately cluster reposito-
ries using UMAP and HDBSCAN, even though 68% of all
repositories do not provide any topics. For our evaluation, we
labeled a set of 120 repositories though domain knowledge
and are able to achieve an F1-score of 0.93, precision of 0.90,
and recall of 0.96 on that sample. Our experiments suggest
that our approach provides a reliable and efficient method to
obtain similar repositories for any given repository.

A current limitation of our approach is its reliance on
keyword-based features, which may not capture deeper
semantic similarities between repositories. In future work,
we plan to explore the use of embedding-based represen-
tations and pre-trained NLP models to improve semantic
understanding and clustering quality. In future versions of our
topic clustering approach we aim to complement our techni-
cal evaluation with user-centric validation, such as usability
studies or feedback from domain experts, to better assess the
practical usefulness of the clustering results in real-world
scenarios.
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