
Resource and Agreement Management in Dynamic Crowdcomputing Environments

Harald Psaier, Florian Skopik, Daniel Schall, Schahram Dustdar

Distributed Systems Group

Vienna University of Technology

Argentinierstraße 8/184-1, A-1040 Vienna, Austria

{lastname}@infosys.tuwien.ac.at

Abstract—Open Web-based and social platforms dramati-
cally influence models of work. Today, there is an increasing
interest in outsourcing tasks to crowdsourcing environments
that guarantee professional processing. The challenge is to
gain the customer’s confidence by organizing the crowd’s
mixture of capabilities and structure to become reliable. This
work outlines the requirements for a reliable management in
crowdcomputing environments. For that purpose, distinguished
crowd members act as responsible points of reference. These
members mediate the crowd’s workforce, settle agreements,
organize activities, schedule tasks, and monitor behavior. At
the center of this work we provide a hard/soft constraints sche-
duling algorithm that integrates existing agreement models for
service-oriented systems with crowdcomputing environments.
We outline an architecture that monitors the capabilities of
crowd members, triggers agreement violations, and deploys
counteractions to compensate service quality degradation.

Keywords-crowdsourcing, service agreements, scheduling,
behavior-based adaptation

I. INTRODUCTION

Crowdsourcing applications [1] are typically open Internet

based platforms where problem-solving tasks are distributed

among a group of humans. Crowdsourcing follows the

‘open world’ assumption, allowing humans to provide their

capabilities through the platform by registering themselves

as members. A popular crowdsourcing platform is for ex-

ample Amazon Mechanical Turk [2]. Currently, two types

of crowdsourcing modes have been identified [3]. In mar-

ketplace oriented crowdsourcing crowds are organized by

providers or brokers that bid for and distribute requests. In

competition based crowdsourcing the request is an open call

to the crowd and the winning submission is picked.

While conventional enterprise systems rely on well estab-

lished policies, crowdsourcing has a more loosely-coupled,

dynamic, and flexible structure and depends especially on

the preferences and behavior of the individual crowd mem-

bers. Even if an advantage of a crowd platform is the pos-

sibility to choose from a larger number of skilled members,

the selection must consider, e.g., the distinguished working

hours of the members possibly contradicting with the current

requirements. The members availability will mostly depend

on their context. Their working hours, for example, also

depend on their location and the related timezone. Con-

text does not only influence task assignment strategies but

certain changes can also cause unpredictable interruptions

of services. This leads to an incomplete and unsatisfactory

task state at deadline. As a consequence, meeting promised

service contracts is challenging and demands for sophisti-

cated management techniques for a crowd platform. One of

the key issues of the management investigated in this work

is to find an appropriate scheduling for task assignments

that matches tasks to skills and to the availability of the

members, and above all, also meets the agreed contract.

This adaptive scheduling strategy must constantly update

on changes, and ensure, that shifts in interest, skills, and

behavior of members including task-related misbehavior,

such as degrading worker performance, refusal of tasks, or

missing feedback that affects successful task completion is

detected, avoided, and balanced with alternative workforce.

In this paper we describe a framework which integrates

agreements into service-oriented crowdsourcing platforms.

The prerequisite is a monitoring infrastructure that updates

a crowd-based resource model. In our previous work [4], [5],

we studied a monitoring and behavior adaptation architecture

serving as the basis for the presented agreement manage-

ment. Here, we focus on an agreement model combined

with an adaptation approach for reliable task execution. An

accurate resource model supports a sophisticated scheduling

of crowd activities. A self-adaptive mechanism must antici-

pate misbehavior and update the crowd’s task scheduling to

enforce behavior rules also dictated by the agreement.

Here we address the following challenges:

• Human Behavior Characteristics. The crowd is a tran-

sient network where humans can join and leave the

platform at any time. Furthermore, in contrast to soft-

ware services, human behavior is subject to numerous

contextual constraints.

• Feedback Loop. Since the crowd’s resources, i.e., avail-

able members and their capabilities, are in a constant

flux and change, models for monitoring the environ-

ment and accounting for given constraints need to be

applied.

• Quality Guarantees. It is challenging to provide any

guarantees regarding execution time and reliability of

actors in highly dynamic environments. Our flexible

agreement management models tackle that problem by

allowing management of negotiated agreements.

In-house

process

s1

s2

s3

s5

c4

Entry

Point

Commuity

Broker

II
III

I

(a) Test cycle.

wI

vI

uI

Crowd

xII

yII

zIII
a b

c

Commuity

Broker

Entry

Point

In-house

process
Head

Hunter

II
III

I

(b) Agreement setup.

wIuI

Entry

Point

Crowd

In-house

process

a
c

Head

Hunter Commuity

Broker

bI

I

(c) Assignment.

Symbols:

actor

profile data

agreement

dependencies

knows

assignment

activity

(d) Symbols.

Figure 1. Crowdsourcing software tests.

This paper is structured as follows: in Section II re-

lated work is discussed followed by a section describing a

crowdcomputing scenario. Section IV details a framework

that addresses identified challenges regarding agreement

management. Section V discusses the layout of agreements

and use of quality metrics for adapting crowd scenarios

in order to meet agreements. One promising adaptation

approach is dynamic re-scheduling of tasks in crowds which

is highlighted in Section VI. Section VII shows evaluation

results and Section VIII concludes the paper.

II. RELATED WORK

Crowdsourcing applications [1] are online, distributed

problem-solving and production models that have emerged

in recent years ([2], [6], [7]). A vast number of registered

individuals offer solutions to the problem. Apart from the

benefit of multiple, redundant workforce and collective

intelligence, crowdsourcing poses some difficult challenges

related to its distributed and open nature. The main chal-

lenge remains how to organize and manage the crowd

and identify potential leaks of resources. Two operating

modes, marketplace and competition based crowd platforms,

have been identified so far [3]. Our assumptions base on

a marketplace oriented crowdsourcing environment where

mediators manage the crowd. Moreover, we base our ideas

around existing mediator services that post tasks on behalf

of their clients [8].

There has been substantial research on translations of

service level agreements to a Web-service applicable stan-

dard. Two of the main contributions are the specification

from the Grid Resource Allocation Agreement Protocol

(GRAAP) Working Group [9] and from IBM [10]. Both

present similar XML-based model for an SLA, however,

differ in the details. When creating their specification the

GRAAP Working Group in particular focuses on the setup,

negotiation, and renegotiation phases of the agreement, thus,

presents a rather flexible structure [11]. IBM’s WSLA focus

was on defining agreement objectives, their constraints and

combination. For this purpose parameters can be linked to

SLOs together with thresholds. In our work we reuse the

parameter scheme to define our quality attributes.

Scheduling is a well-known subject in computer science.

The novel contribution in this work is to consider multidi-

mensional assignment and allocation of tasks. A thorough

analysis and investigation in the area of multidimensional

optimal auctions and the design of optimal scoring rules

has been done by [12]. In [13] iterative multi-attribute

procurement auctions are introduced while focusing on

mechanism design issues and on solving the multi-attribute

allocation problem. Focusing on task-based adaptation, [14]

near-optimal resource allocations and reallocations of human

tasks were presented. Workforce scheduling research investi-

gates the impact of weights on the multiple, at times contra-

dicting, objectives in real work workforce scheduling [15].

Staff scheduling related to closed systems was discussed in

[16], [17]. However, unlike in closed enterprise systems,

crucial scheduling information, i.e., the current user load

or precise working hours are usually not directly provided

by the crowd. Instead, the scheduling relevant information

must be gathered by monitoring. The work in [18] details

the challenges for collaborative workforce in crowdsourcing

where activities are coordinated, workforce contributions are

not wasted and final results are guaranteed.

III. CROWDCOMPUTING ENVIRONMENT

This section motivates our work and outlines a crowd-

computing environment. With reference to existing testing

marketplaces, c.f. [19], we present a software testing sce-

nario and discuss the different roles of crowd members.

A. Roles in Crowdcomputing

The crowd Entry Point(EP) is a mediator that connects

customers from outside the crowd with the required crowd

members (see Figure 1). Generally, crowd customers look

for a certain knowledge or capability which their company

environments lack. Thus, the EP maintains regular contacts

to required crowd members. It acts as representative of a

company’s outsourced assignments to the crowd and must

assure all implications to the dependencies with the com-

pany’s internals. The Community Broker (CB) is a proxy

for a certain crowd segment or platform. It maintains and

represents a group of registered members with similar capa-

bilities and offers the joint knowledge to interested parties,

e.g., EPs. In the example of Figure 1, the representative

of platform I is the CB of the crowd member group u,

v and w with a I subscript each. A CB is in charge of

a fair distribution of the incoming assignments and settles

agreements. The Head Hunter (HH) acts as a kind of registry

for a crowd environment. It monitors the tendencies of the

required capabilities in the crowd environment, and discov-

ers new knowledge sources (single members or groups).

Additionally, it offers an interface that allows new members

to register, and further, to be discovered. EPs and CBs can

find required partners and members using the HH’s lookup

service. In the example in Figure 1, the HH provides, e.g., for

the new crowd members a, b, and c a first point of reference

to enter the crowd business. We argue that, between entities

of these roles, relations based on agreements also need to

be established. Agreements state rules that organize and

regulate the assignments of tasks in the crowd. They help

to assure dependencies and regulate the rather unpredictable

behavior of an unorganized crowd.

B. Use Case Scenario

In Figure 1 we outline the various phases of a typical

crowdsourcing software test scenario. Beginning with Figure

1(a) the in-house quality assurance (QA) process is split

into five repetitive and automated steps (s1, s2, s3, the

crowdsourcing step c4, and s5). In s1 all modules that need

to be tested are collected for the next upcoming QA cycle.

In s2 a sorting process differs between automated tests that

run in the company’s own test environment and those that

need to be crowdsourced by, e.g., monitoring a flag on

the test units provided by the QA team. Step three (s3)

represents the test period run in-house. In parallel, in step

c4 a company’s representative, EP, is in charge of a smooth

flow of the crowdsourced test activities. In order to get into

this position, s/he needs to have some previously established

relations to available crowd platforms, e.g., I, II, and III, and

their representative CBs. Having numerous alternatives for

outsourcing guarantees a reliable management of this test

period. The final step s5 collects the testing results for an

evaluation and merge.

Next, in Figure 1(b), the EP has to decide which crowd

community can handle the currently pending test activities.

The assignment depends on the requirements of the tasks and

resources of current platforms, in particular, the members’

capacities and capabilities. Next, the EP must balance the

effort, expected quality, and costs of the available CBs’

offers. If none of the known CBs fits the requirements, the

EP can invoke the HH lookup service to find a new CB. Thus

a HH mediates CBs to an EP on request. In the example,

however, this is not the case and EP contacts the chosen

platform I’s representative. An agreement for the following

assignment is negotiated.

Figure 1(c) illustrates the scenario at runtime. Testing

activity segments, i.e. tasks, are delegated to the appropriate

crowd members. As mentioned in the introduction, the

crowd’s structure is transient and its members’ processing

attitude is context dependent and individual, thus, at times

unpredictable. In the given example, nodes u, v, and w

process dependent tasks. However, v is not able to process

the tasks as scheduled. It is now the challenge of the crowd

management to find a solution. A first solution would be to

reschedule the task. Unfortunately, in the presented scenario

no member can replace v. The CB must call the assistance

of the HH and request a fitting, though previously unknown,

crowd member. As depicted, member b is mediated to CB of

platform I and takes over the duties of node v. Finally, once

all tasks have been completed, the results are collected and

merged by the EP. Thereafter, the final result is provided to

the evaluation step (s5).

C. Agreement Management

A CB is usually either a business person who established

a dedicated platform and invited crowd members to join, or,

has emerged from a formation of members with the same

interests to represent them. Because crowd environments are

open systems with no guarantees, the main role of the CB is

to fill this gap. S/He provides the otherwise missing, how-

ever, necessary guarantees to the EP. In particular, guarantees

in this scenario include a satisfying, proper conduct of the

tests. Just like in a cooperation between two companies,

EP and CB, set-up an agreement for the outsourced test

activity. The agreement identifies the activity, settles the

test scheduling, and states metrics to measure the demanded

quality. The quality preferences include attributes, such as,

maximum tolerated running time for the assigned tasks, fees,

demands on the result, etc..

Our proposed agreement management approach employs

the following fundamental concepts when distributing tasks

in the crowd:

Hard- and Soft-Constraints. We distinguish between crite-

ria that must be met, e.g., expertise area of crowd members

and their principal participation interest and so-called soft

constraints that are used for ranking potential crowd mem-

bers, including their capacity, reputation, and costs.

Environment Observation. Periodic run-time monitoring

and evaluation of the crowd members’ behavior in terms

of reliability and task execution progress enables timely

detection of misbehavior and quality degradations.

Adaptation and Optimization. Using feedback data ob-

tained from behavior monitoring enables numerous adapta-

tion mechanisms to optimize the assignment and execution

of tasks in the crowdcomputing environment; for instance the

reassignment and/or rescheduling of tasks in case of deadline

misses.

IV. ARCHITECTURE

The new extensions to our previous work on the V ieCure

Framework [5] are detailed in the following section. The

additions include monitoring of agreements and scheduling

of assignments based on policies.

logs

VieCure Framework

Logging DB

Monitoring Features

Agreement Manager

Diagnosis and Planning

Policy Store
scheduling

plans

SLO

Configuration

Monitoring

Manager

Agreement

Negotiation

Network

Assessment

Crowdcomputing Environment (SOA)

scheduling

order/

rescheduling

assignment

feedback

Service Level

Objectives

assign

crowd

Crowd

Scheduler

assignment

status

Scheduling and

Adaptation

Assignment

Behavior Analysis

Figure 2. Agreement management framework.

A. Architectural Overview

Figure 2 outlines the three-layer infrastructure of the

framework extension. The top layer comprises the Agree-

ment Manager. This is a tool-set to monitor, track, and

analyze the crowd structure. Additionally, by hiding the

particularities of the scheduling technique, it allows to

extend and change the framework’s SLOs and Policy Store

entries, thus, adapt the environment to new agreements.

The layer in the middle represents the framework itself. It

is organized according to an automated adaptation loop

and its main purpose is to adapt the Crowd Scheduler’s

assignment strategy. The strategy depends on the current

crowd’s acceptance behavior and capacities, as well as,

on policies representing system and agreement constraints.

Therefore, interfacing with the environment, the Assignment

Behavior Analysis collects feedback to a log database and

forwards the current status to the Diagnosis and Planning

module. Considering the valid policies and the fresh assign-

ment status from analysis this module adapts the scheduling

order, and/or, on an assignment reject, issues a rescheduling

directive with new ordering rules to the Crowd Scheduler.

Depending on the current situation the Crowd Scheduler uses

its algorithm to assign a batch of tasks, or on request of

Diagnosis and Planning module, reschedules a unsuccessful

assignment. Finally, the scheduling result is transmitted to

the Scheduling and Adaptation module. This deploys the

assignments and scheduling changes to the crowd.

B. Further Building Blocks

The bottom layer of the architecture in Figure 2 bases

on a service-oriented architecture (SOA). In our previous

work, we studied flexible interactions [20], metrics in crowds

[21], and monitoring of service-oriented collaboration envi-

ronments [5]. Here we give a quick overview of the main

principles and our findings.

SOA-based Interactions in Crowds. Dynamic discovery

of services, flexible interactions and compositions at run-

time are only some properties that make SOAs an in-

tuitive and convenient technical grounding for large-scale

crowdsourcing environments. However, not only service

interactions, but also human interactions may be performed

using SOAP (see Human-Provided Services [20] for col-

laborative environments and BPEL4People [22] for human

interactions in business processes), which is the state-of-

the-art technology to exchange XML-based messages in

service-oriented environments, and well supported by a wide

variety of software frameworks. There exist well-known

and accepted standards for modeling and monitoring service

level agreements that act as an integral part of our approach

(c.f., Section II).

Failure Compensation through Dynamic Adaptation.

Performance degradation and failures may arise due to

various reasons. Especially in crowdsourcing environments,

human (mis-)behavior has a fundamental influence on the

overall success rate regarding task execution and throughput.

We studied an approach to rate and categorize human behav-

ior earlier [5] to be able to compensate malicious behavior

in collaborative networks. For that purpose, typically adap-

tation rules are pre-defined (e.g., seize tasks from unreliable

workers) and applied according to adaptation policies. These

mechanisms rely on monitoring data that is captured from

the service-oriented infrastructure.

The next section gives a detailed description of the

sequence of operations between the framework’s modules

and outlines their interaction with the system in the various

phases of an agreement’s life-cycle.

C. Agreement Life-Cycle

The life-cycle of the agreement includes three distinct

phases. In the first phase, offers are invited and an agreement

for the assignment is negotiated. With the agreement as a

base for the business relation, the additional environment

policies need to be applied in the line with the agree-

ment. Next, tasks are scheduled and assigned to the crowd

members according to the policies order. In parallel, the

assignments status is diagnosed. A rejected assignment must

be rescheduled.

The sequence in Figure 3 presents an agreement’s life-

cycle. It details the interactions between the involved parties,

EP and CB presented in Section III, and the automated

V ieCure crowd assignment management.

Negotiation.While an EP browses for interesting bids, the

CB uses the V ieCure Framework to create offers within

the limits of the current crowd’s capacities. On a request an

individual offer can be created and provided. The negotiable

items of a later assignment and their boundaries depend on

the available resources and their current scheduling. Both

can be gathered by checking availability at the Crowd Sched-

uler and the current crowd member status at the Diagnosis

and Planning module. The provided offer is revised by the

Crowd

Scheduler

Diagnosis and

Planning
EP CB

Scheduling and

Adaptation

reqOffer
availability

crowdStatus
offer

agreementReq

agreementOffer

sign

accept

sign

check

offer

setPolicies

resetPolicies

readyForAssign

assignment

reschedule

scheduleCrowd

scheduleCrowd

getStatus

schedule

schedule

getStatus

getStatus

getStatus

getStatus

setOrder

VieCure

scheduleTasks

allComplete
endAgreement

Figure 3. Agreement management life-cycle.

EP comparing it against the in-house requirements. If not

pleased, negotiation starts over again or a different CB is

considered as service provider. Finally, a satisfying offer

including the agreement details in the objectives is signed

by both parties and enacted with the according policies for

assignment management.

Scheduling. Once the agreement’s objectives are trans-

lated into new scheduling policy rules, the CB is ready to

take over the assignment and schedule the tasks in sequence.

Meanwhile, tasks are arranged by the Crowd Scheduler’s

strategy according to a valid order and their priorities.

The scheduling plan is propagated to the Scheduling and

Adaptation module. Then, the in sequence distribution of

the tasks to the members concludes the scheduling phase.

Rescheduling. Situation and behaviors change. Some of

the members will reject their scheduling plans. The Diag-

nosis and Planning module receives the current assignment

status of all involved members and reacts to rejects with

rescheduling orders for the Crowd Scheduler. As the mem-

bers’ status has changed with previous assignments, the Di-

agnosis and Planning module must also adapt the scheduling

strategy for any reassignment. Generally, it keeps a record

of the rejects and accepts and adapts the present scheduling

strategy to the current crowd’s acceptance behavior.

In the line with the requirements emerging from the agree-

ment’s life-cycle in the next section we detail a structure for

the agreements and discuss examples of fundamental quality

attributes applicable for crowdcomputing.

V. AGREEMENTS AND QUALITY

The growing interest in outsourcing tasks to platforms

hosting crowds entails the demand for reliable business con-

tacts, clear rules, and applicable agreements. A prerequisite

of our approach is a reliable behavior monitoring. This

ensures up-to-date data for metrics and quality attributes.

A. Agreement Structure

The used agreement model is inspired by the work of

IBM and the GRAAP Working Group presented in Section

II. The overall structure includes header, agreement items,

and terms. The header comprises the agreement’s parties

details and contact information. In the contractual items the

agreement’s subjects are listed. These include the service

content (i.e., in Web-service environments WSDL location,

endpoint, and operation) along with scheduling information,

metrics and their measuring method. Finally, the terms

provide the objectives, SLOs respectively, and their valid-

ity period. Threshold values expresses the desired relation

between objectives and metrics defined in the items. In the

next section, we provide a number of quality metrics that

can be applied and measured in SOA based crowdcomputing

environments, and thus, aligned to the described structure.

B. Quality Parameters

Analyzing the requirements of the scenario in Section III,

Table I represents a plausible list of quality attributes for

negotiation in crowdcomputing. The crowd broker manages

the attributes for registered crowd members and constantly

updates their value.

Table I
NEGOTIATED QUALITY ATTRIBUTES.

Quality Attributes Description

reliability predicted confidence in the assignment ac-
ceptance of a member.

load estimated task queue size of a member.

overlap match between a member’s capabilities and
the task’s requirements.

cost fee demanded by a member for processing a
task.

The first listed quality attribute, reliability, is related to

the assignment acceptance behavior of a particular member.

It reflects the difference between total assigned and rejected

tasks. The monitored load represents the current task load

at a member. The overlap factor indicates how suitable a

member is for a certain task assignment by calculating the

overlap of its capabilities and the task’s requirements. Lastly,

the cost attribute states the maximum fee that can be charged

by a member for a processed task.

VI. TASK SCHEDULING IN THE CROWD

Next, we provide an example of an agreement in extended

WSLA (Web Service Level Agreements)1 notation. The

format is XML-based, thus, processable for the phases of

negotiation, and extraction of agreement items and objec-

tives. Further, this helps to fit the extracted hard- and soft-

constraints into a self-adaptive scheduling algorithm that is

formalized in Algorithm 1.

1http://www.research.ibm.com/wsla/WSLA093.xsd

A. Agreement Setup

The XML examples in Listing 1 and Listing 2 detail

a sample WSLA agreement applicable to crowdcomputing

environments. Only the important parts are fully listed.

Additionally, the structure has been extended to fit the

crowdcomputing particulars.

1 <wsla:SLA

2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xmlns:wsla="http://www.ibm.com/wsla"

4 xmlns:hps="http://www.infosys.tuwien.ac.at/hps/"

5 name="SwTestCrowdSLA5312">

6 <wsla:Parties>

7 <wsla:ServiceProvider name="CommunityBroker">

8 <!−− ...−−>

9 </wsla:ServiceProvider>

10 <wsla:ServiceConsumer name="EntryPoint">

11 <!−− ...−−>

12 </wsla:ServiceConsumer>

13 </wsla:Parties>

14 <wsla:ServiceDefinition name="TestService">

15 <wsla:Operation

16 xsi:type="wsla:WSDLSOAPOperationDescriptionType"

17 name="AddActivity">

18 <!−− schedule period−−>

19 <wsla:SLAParameter name="FeedbackExpected"

20 type="int" unit="Days">

21 <wsla:Metric>CountDays</wsla:Metric>

22 </wsla:SLAParameter>

23 <!−− config details: name, wsdl−location, binding−−>

24 </wsla:Operation>

25 <hps:SLAActivity name="Testing">

26 <hps:SLAInvolvedProfiles>

27 <hps:SLAProfileTyp>UI Test</hps:SLAProfileTyp>

28 <!−− ... functional, performance, security−−>

29 </hps:SLAInvolvedProfiles>

30 <hps:SLAReportURI>http://.../reports</hps:SLAReportURI>

31 <wsla:SLAParameter name="TasksCost"

32 type="float" unit="Euro">

33 <wsla:Metric>MaxCost</wsla:Metric>

34 </wsla:SLAParameter>

35 <!−− reliability, load, overlap−−>

36 </hps:SLAActivity>

37 </wsla:ServiceDefinition>

38 <!−− wsla Obligations−−>

39 </wsla:SLA>

Listing 1. Involved parties and body.

After the contract parties’ details, ServiceProvider and

ServiceConsumer listed in lines 6 to 13, Listing 1 states

the items from line 14 to 37. These are a collection of

ServiceObjectType items including scheduling, operation

description, and configuration, and also, an SLAParameter

(FeedbackExpected) arranging periodic feedback. Im-

portant and a new contribution to this part is the SLAActivity

(lines 25 to 36). It extends WSLA’s ServiceObjectType and

states what kind of member capabilities must be involved

in the testing activity (line 27), at which URI the final

testing reports are expected (line 30), and at the end, the

SLAParameters for the assigned activity.

These include for example, all the quality attributes as

presented previously in Table I. The parameter is identified

by a name, a type, a unit, and related to a metric for

estimation.

Listing 2 shows the terms as Obligations of the contract

including all SLOs. An SLO consists of an obliged party,

a validity period, and Expressions that can be combined

1 <wsla:Obligations>

2 <wsla:ServiceLevelObjective name="sloSrv"

3 serviceObject="AddActivity">

4 <wsla:Obliged>CommunityBroker</wsla:Obliged>

5 <!−− Validity−−>

6 <wsla:Expression>

7 <wsla:Predicate xsi:type="wsla:Equal">

8 <wsla:SLAParameter>FeedbackExpected</wsla:SLAParameter>

9 <wsla:Value>7</wsla:Value>

10 </wsla:Predicate>

11 </wsla:Expression>

12 </wsla:ServiceLevelObjective>

13 <wsla:ServiceLevelObjective name="sloAct"

14 serviceObject="Testing">

15 <wsla:Obliged>CommunityBroker</wsla:Obliged>

16 <!−− Validity−−>

17 <wsla:And>

18 <wsla:Expression>

19 <wsla:Predicate xsi:type="wsla:LessEqual">

20 <wsla:SLAParameter>TasksCost</wsla:SLAParameter>

21 <wsla:Value>50.0</wsla:Value>

22 </wsla:Predicate>

23 </wsla:Expression>

24 <!−− expressions for reliability, load, overlap−−>

25 </wsla:And>

26 <wsla:EvaluationEvent>TaskAssignment</wsla:EvaluationEvent>

27 </wsla:ServiceLevelObjective>

28 <wsla:QualifiedAction>

29 <wsla:Party>CommunityBroker</wsla:Party>

30 <wsla:Action actionName="violation" xsi:type="Notification">

31 <wsla:NotificationType>Violation</wsla:NotificationType>

32 <wsla:CausingGuarantee>sloAct</wsla:CausingGuarantee>

33 <wsla:SLAParameter>MaxCost</wsla:SLAParameter>

34 <!−− expressions for reliability, load, overlap−−>

35 </wsla:Action>

36 </wsla:QualifiedAction>

37 </wsla:Obligations>

Listing 2. Obligations and SLOs.

with a logic expression (e.g., And). The content of the

expressions connects the pool of SLAParameters of the items

to a predicate (e.g, Equal) and threshold value (Value).

The final tag QualifiedAction defines the consequence of an

SLO violation. In the example case, if a threshold of SLO

solAct is violated an action Notification is called.

B. Scheduling Algorithm

As mentioned in the introduction there is numerous factors

that influence the human behavior. Thus, one crucial factor

when scheduling tasks in crowdcomputing environments is

that one cannot rely on the constant availability of resources

(i.e., humans). These dynamics and the system size inhibit

a fully automated scheduling approach. Instead in this work

we base our assumptions on a semi-automated task assign-

ment algorithm with a human, e.g. CB, in-the-loop. Such an

approach remains highly adaptable and suitable for crowds.

Tasks that are outsourced to the crowd have three impor-

tant categories of properties. First, keywords describe the

task’s type and required capabilities. These are matched to

the members’ profiles. Second, a task has temporal con-

straints for the scheduling process. A task has a latest begin

time, and a length as the estimated time spent to complete

the task. Combined, these properties define the deadline, and

also, the latest possible reassign time. A task assignment

fails if members do not acknowledge processing until the

task’s latest begin time. In many scenarios including soft-

ware testing tasks depend on one another. Thus, a property

of a task can either represent a parent task with dependent

subtasks, a subtask or an independent task. The impact of a

failed processing of a parent task results also in a failure of

the dependent subtasks. This needs to be considered when

scheduling complex tasks in crowdcomputing environments.

In the following we detail the steps of the crowd sche-

duling algorithm. Let us define the set of crowd members

U = {u1, u2, . . .} and the set of tasks T = {t1, t2, . . .} to

be processed by the crowd. The goal of the algorithm is to

assign each task to one individual crowd member. Notice, we

do not make any assumption about the role of the broker. In

fact, the broker may be implemented as a software service,

thus the procedure is fully automated, or the procedure may

be performed under human supervision.

Algorithm 1 Task scheduling in the crowd.

Require: T 6= ∅ ∧ U 6= ∅
1 AT ← ∅ /* Set of assigned tasks */

2 FT ← ∅ /* Set of failed (to assign) tasks */

3 foreach Task t ∈ T do

4 /* Retrieve matching members with U ′ ⊆ U */

5 U ′ ← getAllMembersMatchingTask(t)
6 foreach Member u ∈ U ′ do

7 /* Check additional constraints */

8 if meetsDeadline(u, t) == false ∨
meetsResponseTime(u, t) == false then

9 continue /* Do not consider as candidate */

10 end if

11 score(u,t) ← calculateScore(u,t)
12 U ′′ ← insertByScore(score(u,t),U ′′)

13 end foreach

14 CM [t]← U ′′ /* Save CM */

15 foreach Member u ∈ CM [t] do
16 if assignTask(u,t) == true then

17 AT ← AT ∪ t

18 break

19 else

20 CM [t]← CM [t]\u /* Remove u from CM */

21 end if

22 end foreach

23 if t /∈ AT then

24 FT ← FT ∪ t /* Add t to FT */

25 end if

26 end foreach

Given the loop in Algorithm 1 (lines 3 to 26), three

essential steps are performed:

Matching. A set of members whose profiles satisfy a

task’s required capabilities (see line 5) are selected. The

detailed profile matching procedure is, however, not detailed

in this work. Also, the demanded degree of match depends

on the nature of a task (parent or subtask). In our system,

parent tasks demand for a broader area of expertise thereby

requiring a full match of a task’s keywords and a members

capabilities.

Ranking. Next (see lines 6 to 13) additional filtering

and ranking is performed. The steps are a mixture of hard-

and soft constraints. First, meetsDeadline is a filter to

evaluate a task’s deadline against the user u’s expertise

profile and estimated load. An expert who has already proven

experience collected by processing a given type of tasks may

finish a task faster compared to a relatively unexperienced

user. Also, the estimated current load of a user from a

particular broker’s point of view is taken into account;

i.e., whether or not u will be able start processing a task

without violating time constraints such as deadline. Second,

the filter meetsResponseTime is based on the user’s

context. Crowd members may be scattered around the globe.

Therefore, different timezones as well as preferred working

hours may prevent a member from processing a task in a

given time frame. These two filters rely on hard constraints

and cannot be influenced. The soft constraints are covered by

a third type procedure. It performs a ranking based on a set

of metrics that are specified in the context of an agreement.

The details regarding this step (line 11) are given in the

following.

Assignment. Finally, based on the ranked candidate list

CM [t] (see line 14), the broker attempts to assign the task

t (see line 16). Indeed, an assignment may fail due to the

aforementioned challenges in crowdcomputing such as lim-

ited knowledge of the user’s actual load. If the assignment

succeeds, the task t is added to the set AT and our algorithm

continues to process the next task. Otherwise, the member u

is removed from the list of candidate members CM [t] (see
line 20). Notice, the list CM [t] is kept for reference in case

a given task t needs to be seized from the assigned member

due to lack of processing progress. In this case, the next

(top-ranked) member in CM [t] is picked. The set of failed

tasks FT may require renegotiation of agreement metrics.

Renegotiation procedures are currently not covered by our

approach. The scoring function used in our algorithm (line

11) is defined as

score(u,t) =

[

∑

m∈M ′

|wm| × score(u,m)p

]1/p

(1)

The detailed parameter description can be found in Table

II. This approach is based on a model for simultaneity and

replaceability of preference parameters known as Logic-

Scoring of Preferences (LSP), e.g. [23].

The parameter p can be assigned manually based on the

desired scoring behavior [23] or calculated automatically.

Here we use a simple pattern to calculate p based on the

homogeneity (or diversity) of the preference weights wm ∈
W where W is the set holding preference weights for each

metric m: if max(W)− min(W) > avg(W) use p = 1.5, if
max(W)−min(W) = avg(W) use p = 1, otherwise use p =
0.5. This means that replaceability should be preferred over

simultaneity if the weight values (preferences) vary highly

expressed by the relationship between max and min values

compared to the average (avg) weight.

Table II
DESCRIPTION OF RANKING PROCEDURE.

Symbol Description

m Metric m ∈ M ′ with M ′ ⊆ M as defined in the
SLA. Examples of a set of metrics and correspond-
ing values that are obtained through monitoring and
mining include reliability and load.

wm The weight assigned to a given metric m such that
P

m∈M′ |wm| = 1. Weights are thereby not assigned
independently or arbitrarily but rather with respect to
preferences for individual metrics.

score(u, m) Scoring function for a given user u. The sign of
a weight wm is used to determine whether higher
or lower values denote better scores. For example,
higher reliability results in higher scores (i.e., +wrel)
whereas lower values in costs are more desirable (i.e.,
−wcost).

p Parameter to configure simultaneity or replaceability

of a metric. Simultaneity is a desired property if each
metric m is important. As an example, a member
should have good scores for both overlap and reliabil-
ity as opposed to having only good overlap. Replace-
ability means that higher overlap may compensate for
low reliability or vice versa.

VII. SIMULATION AND EVALUATION

The main idea of the evaluations is to identify the

boundaries of the scheduling algorithm presented in Section

VI in crowdcomputing environments to support reasonable

negotiations of quality attributes in agreements. Monitored

with the metrics defined by common crowdsourcing quality

parameters presented in Section V we setup a simulated

crowdcomputing environment with properties related to the

environment outlined in the scenario. We consider only a

subgroup of a larger and more complex crowdcomputing

network because in contrast to existing environments with

our broker approach resources can be organized for specific

skills. In particular, we study the challenges and effort of

scheduling, and also of rescheduling, tasks for differently

behaving crowd members.

A. Environment Setup

The simulated crowd environment comprises a frame-

work implemented in Java language with a CB singleton

instance, a crowd of 128 members, a task model, and various

helper instances for the score calculation as detailed in the

previous section. The single CB holds a reference to all

crowd members in a registry. In a loop it tries to schedule

batches of tasks for the members according to our scheduling

algorithm and to reschedule tasks if rejected.

Each crowd member has its own capability profile.

Additionally, the member exposes a predefined behavior

in task assignment and task processing. The acceptance

behavior in task assignment depends on the current task

queue size. Whilst on an empty queue the member is eager

to get task assignments, the enthusiasm decreases linearly to

full reject at a number of 6 tasks in queue. The processing

behavior is assigned at bootstrapping. Three different types

of behavior patterns are known to the system. The first one

processes tasks with a probability of 20%, the second one

50%, and the last one 80%. The behavior patterns are equally

distributed among the members. Finally, members charge a

fee for their service. In a further extension, a quarter of the

members are randomly assigned with a fee rate which we

consider to exceed the fixed rate negotiated in the agreement.

Tasks have temporal properties as discussed previously.

Tasks have a latest begin time and length in time slices. In

our experiments reassign time was set to 3 slices prior to

latest begin. If an assigned member does not acknowledge

processing until the task’s latest begin time, the task fails.

The impact of a failed processing of a complex (parent) task

results also in a failure of the dependent subtasks.

At bootstrap the framework instantiates broker and mem-

bers and fills the registry. The runtime is split in two phases

including scheduling and rescheduling activities. Both pha-

ses apply Algorithm 1 to assign a batch of tasks. Members

have different behavior in accepting and processing tasks.

Thus, the goal of the two phases is to minimize the task

failure rate, and in the later experiments, to minimize the

costs of processing by choosing the currently less expensive

crowd member. Two different scheduling strategies have

been implemented and evaluated. The first one, a random

strategy, picks from the set of available and capable crowd

members randomly the next candidate for the assignment.

The second one, the metrics assisted strategy, uses the previ-

ously presented metrics in Table I to select the next candidate

from the set. During an independent task assignment the

metrics weight factor is equally distributed. Nevertheless,

this strategy is also aware of task dependencies. Once a

parent task is assigned, an extra weight (60%) is set to the

overlap metric to move the most overlapping members to

the begin of the selection queue.

B. Experiment Results

The main goal of the experiments is to illustrate the

effectiveness of the metrics enhanced scheduling algorithm

outlined in Algorithm 1; also compared to random sche-

duling. In the first set of experiments Figures 4(a), 4(b), 4(c),

and 4(d), the percentage of completed tasks with respect to

the total number of assigned tasks is an indicator for the

effectiveness. In the next set of figures (4(e), 4(f), 4(g), and

4(h)), the exceeding costs are considered. This second type

of experiments illustrates the percentage of completed tasks

that exceed the SLA cost objective. As aforementioned, this

is caused by members that exceed the cost with their fee.

The results of the two sets are presented by the rows in

Figure 4. Furthermore, to explore lower, and in particular,

upper bounds of the algorithm different batch sizes of tasks

are scheduled. A batch size defines the number of tasks that

are received from the EP and need to be scheduled in the

next period. In our simulations, once all tasks of a batch

assignment are past their deadline, a new similar size batch

rn r on o cn c
0

0.2

0.4

0.6

0.8

1

(a) Processed - 256 batch.

rn r on o cn c
0

0.2

0.4

0.6

0.8

1

(b) Processed - 512 batch.

rn r on o cn c
0

0.2

0.4

0.6

0.8

1

(c) Processed - 768 batch.

rn r on o cn c
0

0.2

0.4

0.6

0.8

1

(d) Processed - 1024 batch.

rn r on o cn c
0

0.1

0.2

0.3

(e) Over cost - 256 batch.

rn r on o cn c
0

0.1

0.2

0.3

(f) Over cost - 512 batch.

rn r on o cn c
0

0.1

0.2

0.3

(g) Over cost - 768 batch.

rn r on o cn c
0

0.1

0.2

0.3

(h) Over cost - 1024 batch.

Figure 4. Results of the experiments for various scheduling strategies with different task batch size. Strategies include random scheduling with no

rescheduling phase (rn) and with rescheduling (r), according to metrics ordered scheduling with no rescheduling (on) and with rescheduling (o), and
finally, metric-ordered scheduling including costs with no rescheduling (cn) and with rescheduling (c).

is scheduled until a number of 10000 tasks total are assigned.

Note, the fixed size crowd has a maximum capacity of 768

tasks per period. The columns of the results in Figure 4

represent the different batch sizes.

As one immediately realizes form the first row of results,

the amount of successfully processed tasks decreases with

increasing batch size. From left to right, the bar at the

very left of the experiment figures shows the results for a

random scheduling strategy with no rescheduling phase (rn).

Together with the next bar, representing random scheduling

with rescheduling (r), they perform the worst with task

processing peeks of only 40% for (rn), and a few more

than half (54%) for (r), respectively, at a batch size of 256.

Even with the rescheduling enabled, this strategy cannot

be considered satisfactory for any of the batch sizes. An

interesting fact is however, that their success rate remains

the same for the 512 and 768 batches. This indicates that

for this strategy a medium to high task queue load results in

a similar success rate. The next two bars represent metric-

ordered scheduling. In contrast to the 4th bar ((o)) the 3rd bar

shows the result without rescheduling phase (on). Starting

with 97% and 99%, respectively, for (on) and (o) at size

256, they decrease to 55% and 67% at size 1024 when

task queues are too small to schedule all tasks. Here the

improvement of rescheduling phase is apparent when testing

higher batch sizes. At size 1024, if a batch is to large for

the task queues, the success rate decreases notably for both

settings. The last two configurations, cost aware ordering

with no rescheduling (cn) and with rescheduling (c), also

consider costs when ordering the candidate set for a task.

Interestingly, the impact to the success rate in comparison

to cost-unaware ordering is only marginal. This is the result

of simultaneity between the metrics.

The second row of experiments reflects the percentage

of successfully processed tasks that, however, exceeded the

expected costs. The results show, that with strategies that do

not consider costs, the amount of tasks exceeding costs is

around 20% for all batch sizes (first four rows). Only if the

cost metric is included, costs can be saved for the minor and

medium batch sizes. With size 256 almost no costs accumu-

late with (cn) and (c). At size 512 half the costs can be saved

as opposed to the other strategies. Starting with batches of

size 768, the results of the two cost considering strategies

diverge notably and perform similarly unacceptable with

respect to cost-unaware strategies. At size 1024, for example,

(cn) results in 20% over cost and (c) in 22%. As a synthesis,

it can be observed that metric-assisted scheduling, generally,

preforms twice as well as random scheduling. This remains

true as long as task queues can schedule all tasks. Reschedul-

ing helps to increase the success of processing in each case.

Whilst the success difference remains on average around

9% for random scheduling, in metric-assisted scheduling

the difference depends on the batch sizes with extremes at

size 256 with only 2% difference and 16% at size 768. If

costs are also taken into account, both random and metric-

assisted scheduling perform comparably. The success of an

additional cost factor for metric-assisted scheduling depends

on the batch size and is negligible for large batch sizes.

afr 256 afr 512 afr 768 afr 1024
0

0.2

0.4

0.6

0.8

1

rn

r

on

o

cn

c

Figure 5. Assignment failure rate (afr) for different batch sizes.

The scheduling effort is another cost source of task

assignments. Referring to the experiments in Figure 5 we list

the assignment failure rate (afr) for the different batch sizes

and varying strategies. The results show the percentage of

scheduling requests that are rejected on the first request. The

results highlight how the increasing batch size reduces the

impact of the afr for the metric-assisted strategies ((on),(o),

(cn), and (c)). These strategies force similar member selec-

tions for comparable tasks. Thus, for small batches and cost

on focus, the low fee members reject on full queues. For size

256 and 512 the effort difference between (rn), (r) and (cn),

(c) is around 20% and decreases rapidly for larger sizes.

VIII. CONCLUSION AND FUTURE WORK

The main objectives of this work were to present a

framework which successfully manages task assignment in

a crowdcomputing environment. In this work we solve the

problem with an adaptive and multi-objective task sche-

duling. Objectives derive from an agreement between a

company and a crowd broker. As we base our environment

on an SOA infrastructure with its convenient technical

grounding for large-scale environments, we are also able to

take advantage of the already existing models for agreements

(WSLA and WS-Agreement). Our extension to one of the

existing standards which includes assignment identifying

information and relation to different objectives, fits the

requirements of our crowdcomputing scenario. When de-

ploying the assignment as independent and dependent tasks

to capable members, these objectives can than be used as

soft- or hard-constraints for a weighted scheduling strategy.

The results of our experiments highlight the advantages of

an objective-aware metric ordered strategy in contrast to

plain random scheduling while task loads remain in between

the boundaries. Nevertheless, the results show, the effort

for ordering the assignment lists induces a higher effort in

scheduling.

In future work we focus our research on two additional

challenges. There remains the need for a fully automated

translation of SLOs into the scheduling objectives. Vice-

versa, this would also assist a semi-automatic approach for

the negotiation phase where current policies are translated

into SLOs that the crowd broker wishes to negotiate. Finally,

a major challenge of crowdsourcing is the fluctuation and un-

predictable behavior of the resources. As already mentioned

in the scenario, however out of scope for this work, we see

great potential in the role of the Head Hunter broker. Its

main function is to lend the missing but required members

to crowd brokers on resource shortage. For that purpose we

plan to study methods and algorithms to derive tendencies

of expertise evolution in crowdsourcing.

ACKNOWLEDGMENTS

This work is supported by the EU through the FP7

projects S-Cube (215483) and COIN (216256).

REFERENCES

[1] D. Brabham, “Crowdsourcing as a model for problem solving:
An introduction and cases,” Convergence, vol. 14, no. 1, p. 75,
2008.

[2] Amazon Mechnical Turk, http://www.mturk.com, May 2011.
[3] M. Vukovic, “Crowdsourcing for Enterprises,” in Proceedings

of the 2009 Congress on Services. IEEE, 2009, pp. 686–692.
[4] H. Psaier, L. Juszczyk, F. Skopik, D. Schall, and S. Dust-

dar, “Runtime Behavior Monitoring and Self-Adaptation in
Service-Oriented Systems,” in SASO. IEEE, 2010, pp. 164–
174.

[5] H. Psaier, F. Skopik, D. Schall, and S. Dustdar, “Behav-
ior Monitoring in Self-healing Service-oriented Systems,” in
COMPSAC. IEEE, 2010, pp. 357–366.

[6] LiveOps, https://www.livework.com/, May 2011.
[7] Yahoo! Answers, http://answers.yahoo.com/, May 2011.
[8] P. G. Ipeirotis, “Analyzing the Amazon Mechanical Turk

Marketplace,” SSRN eLibrary, vol. 17, no. 2, pp. 16–21, 2010.
[9] A. Andrieux et al., “Web Services Agreement Specification.”

Open Grid Forum, 2007.
[10] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck, “Web

Service Level Agreement (WSLA) Language Specification.”
IBM Corporation, 2003.

[11] H. Ludwig, T. Nakata, O. Wäldrich, P. Wieder, and
W. Ziegler, “Reliable orchestration of resources using WS-
Agreement,” HPCC, pp. 753–762, 2006.

[12] Y. Che, “Design competition through multidimensional auc-
tions,” The RAND Journal of Economics, vol. 24, no. 4, pp.
668–680, 1993.

[13] D. Parkes and J. Kalagnanam, “Models for iterative multiat-
tribute procurement auctions,” Management Science, vol. 51,
no. 3, pp. 435–451, 2005.

[14] J. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw,
“Task-based adaptation for ubiquitous computing,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 36,
no. 3, pp. 328 –340, May 2006.

[15] P. Cowling, N. Colledge, K. Dahal, and S. Remde, “The Trade
Off Between Diversity and Quality for Multi-objective Work-
force Scheduling,” in Evolutionary Computation in Combina-
torial Optimization, vol. 3906, 2006, pp. 13–24.

[16] A. Caprara, M. Monaci, and P. Toth, “Models and algorithms
for a staff scheduling problem,” Math. Program., vol. 98, no.
1-3, pp. 445–476, 2003.

[17] A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, “Staff
scheduling and rostering: A review of applications, methods
and models,” European Journal of Operational Research, vol.
153, no. 1, pp. 3 – 27, 2004, timetabling and Rostering.

[18] G. La Vecchia and A. Cisternino, “Collaborative Workforce,
Business Process Crowdsourcing as an Alternative of BPO,”
in Current Trends in Web Eng., vol. 6385, 2010, pp. 425–430.

[19] uTest, http://www.utest.com/, May 2011.
[20] D. Schall, H.-L. Truong, and S. Dustdar, “Unifying Human

and Software Services in Web-Scale Collaborations,” IEEE
Internet Computing, vol. 12, no. 3, pp. 62–68, 2008.

[21] F. Skopik, D. Schall, and S. Dustdar, “Modeling and Mining
of Dynamic Trust in Complex Service-oriented Systems,”
Information Systems, vol. 35, pp. 735–757, 2010.

[22] A. Agrawal et al., “WS-BPEL Extension for People
(BPEL4People), Version 1.0.” 2007.

[23] J. J. Dujmović and H. L. Larsen, “Generalized conjunc-
tion/disjunction,” Int. J. Approx. Reasoning, vol. 46, pp. 423–
446, December 2007.

