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Abstract

Dynamic interactions in complex service-oriented systems increasingly demand for automated adaptation techniques

to optimize resource discovery and selection. We describe a science collaboration scenario that applies mechanisms

for adaptive information sharing, and introduce an adaptation approach that accounts for emerging trust relations

based on varying interaction behavior of collaboration partners. This behavioral trust provides an intuitive ground-

ing for customization and optimization of member compositions and sharing policies. As people prove their reliable

and dependable behavior in jointly performed activities, they become increasingly considered as invaluable part-

ners. We describe the foundational concepts, including support for ad-hoc and self-managed collaboration scenarios,

and dynamic trust determination supported by SOA concepts. We highlight major concerns of trust management in

highly dynamic networks and deal with temporal aspects such as supporting the emergence of trust, efficient update

mechanisms, and aging of relations. Furthermore, we present a prototype implementation of a trust-based sharing

framework, and evaluate its applicability from a system’s perspective and end-user’s view.
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1. Introduction

Over the past years, the Web has transformed from a

pool of statically linked information to a people-centric

Web. Information emerges bottom-up from a multi-

tude of sources including social networks, online fo-

rums, or millions of news feeds [1]. Recently, the

problem of careless personal information disclosure in

today’s interlinked online society has been clearly re-

vealed. Especially, the combination of the willingness

to ‘friend’ total strangers in Facebook1, and open broad-

casting about one’s holiday plans, whereabouts, pur-

chases, home interiors and other personal information

in Twitter2, are unrecognized threats. In some recent ar-

ticles on the Web, e.g., see [2, 3], the authors discuss

to what extent shared personal information of (naive)

users may be exploited. However, not only in open, but

also in closed virtual communities, information sharing
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is a delicate matter. Consider a traditional enterprise

collaboration environment, where individuals need to

share information to perform their tasks. In such sce-

narios, teams of people are formed that deal with sin-

gle steps of project processes. The project management

office assigns roles to each participating person, indi-

cating not only their functional properties and respon-

sibilities (e.g., manager, contributor, assistant, observer

etc.), but also their (access) rights to centrally managed

information and project artifacts. For instance, a so-

phisticated access rights management determines who

may read, write, modify or create documents in the

scope of a specific project. This is mostly controlled by

roles assigned to people and their membership in cer-

tain user groups respectively. In contrast to this tradi-

tional and mainly static access rights management, we

focus on novel approaches suitable for flexible ad-hoc

collaboration systems. Especially in environments that

are structured in flat organizational hierarchies, teams

are mostly not created in advance, but rather establish

themselves (emerge) based on successful collaborations

[4]. In virtual communities, where people dynamically

interact to perform activities, reliable and dependable

behavior promotes the emergence of trust. As collabo-
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rations are increasingly performed online, supported by

service-oriented technologies, such as communication-,

coordination-, and resource management services, in-

teractions have become observable. Some of the key

challenges in mixed service-oriented systems compris-

ing human actors and software services include:

• Discovery of Network Members and Resources. In

many networks, for example social networks, the

discovery and selection process relies on match-

ing of user profiles and resource features that are

mainly static. Utilizing periodically updated trust

relations better accounts for varying user prefer-

ences and avoids lookup based on outdated infor-

mation.

• Access to and Sharing of Information. Traditional

approaches to access rights management are based

on manually assigned static user roles. In dynamic

environments, the user is often not able to keep

track of configurations such as dynamically chang-

ing roles.

• Coordination and Compositions. Especially in

flexible environments, compositions of humans

and services cannot only rely on static structures,

but have to be flexibly adapted based on their run-

time behavior.

• Interaction Policies and Patterns. Policies and in-

teraction patterns describe and restrict communica-

tion paths between network members. Therefore,

periodic adaptation upon ongoing collaborations

enable optimizations according to the outcome of

interactions.

We demonstrated the inference of trust based on mon-

itoring and analyzing fundamental interactions earlier

[4, 5, 6]. In this paper, we study novel methodolo-

gies to flexible information sharing that account for the

dynamics in self-organized ad-hoc collaboration envi-

ronments. Our approach enables adaptive information

sharing based on prior interaction behavior, and there-

fore, based on dynamically changing trust relations be-

tween actors. Similar to offline collaboration, we as-

sume that people are encouraged to share more infor-

mation with well-known and frequently interacting col-

laboration partners. As a typical use case, consider

an academic research community. The single partic-

ipants, such as university members and employees of

national research labs, discuss novel research ideas, and

exchange data via information and communication ser-

vices. As researchers benefit from collaborations and

work successfully together, e.g., resulting in higher pa-

per output and accepted project proposals, trust in each

other’s competencies will emerge. Hence, people that

have proven their cooperative, reliable, and dependable

behavior in prior collaborations, are increasingly con-

sidered as invaluable partners. Our approach accounts

for this behavior to decide the extent of shared personal

information.

Trust models are applied in a wide variety of com-

plex networks, such as service-oriented architectures

and in social- and collaborative environments. The con-

cept of trust facilitates the selection of network mem-

bers and influences future interactions such as the ex-

change of information. Trust management systems that

support such communities apply computational mod-

els to determine beneficial relations grounded in prior

collaboration successes and the mutual fulfillment of

user requirements. In contrast to fundamental quality-

of-service (QoS) models, computational trust accounts

for individual member behavior that is impacted by

and closely linked to social influences, context aware-

ness and personal preferences [4]. In social and col-

laborative environments, trust-based adaptation, such as

(re-)selecting collaboration partners, are indispensable

if members do not interact reliably or fail in performing

certain activities.

Our contributions in this paper are as follows:

• The Concept of Trusted Information Sharing. We

introduce a science collaboration scenario that mo-

tivates the need for trusted information sharing

[7] and adaptive information disclosure in today’s

Web-based collaborations.

• Dynamics in Social and Behavioral Trust Models.

We recapitulate system-managed trust models re-

lying on interaction monitoring and behavior met-

rics interpretation [4, 5, 6]. We extend our model

with mechanisms to effectively and efficiently cope

with inherent trust dynamics due to changing actor

behavior and user requirements in flexible collab-

oration environments.

• Sharing Framework for Service-oriented Collabo-

ration Networks. We discuss an end-user perspec-

tive and show the prototype implementation of a

sharing portal. Besides that, we highlight design

decisions of our service-oriented sharing frame-

work and outline its mode of operation.

• Evaluation and Discussion. We perform experi-

ments to demonstrate the efficiency and effective-

ness of our approach to address trust dynamics en-

abling flexible trust-based information sharing.
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The remainder of the paper is organized as fol-

lows. Section 2 covers important related work includ-

ing context-aware interaction models, trust models, and

engineering of trust in service-oriented systems. Sec-

tion 3 discusses a science collaboration scenario to draw

the fundamental challenges and motivate our work. The

following Section 4 deals with the aspects of supporting

automatic trust emergence in general. In Section 5 we

discuss novel concepts to cope with trust dynamics and

its temporal properties regarding emergence, update and

aging of relations. Then, we highlight the realization of

a sharing portal in Section 6, discuss its design and im-

plementation in Section 7, and evaluate its applicability

in Section 8. Finally, Section 9 concludes the paper and

gives an outlook of our future work.

2. Background and Related Work

We structure related work in three topics relevant

for our adaptive, trust-based information disclosure ap-

proach. First, we discuss context and interaction mod-

els since context-aware, flexible interaction models are

needed to cope with the increasing complexity of col-

laborations and distribution of people and services. Sec-

ond, we believe that the key concept for sharing infor-

mation is dynamic trust. In particular, people tend to

share more information with others who have proven

their reliable, dependable and secure collaboration be-

havior before. Third, since collaborations become in-

creasingly complex and dynamic, manual adaptations

of access rights are not sufficient any longer. Automati-

cally managed trust relations are the ideal grounding to

reflect these dynamics and an intuitive means to adapt

access rights to resources automatically.

Context-aware Interaction Models. Context has

been at the center of many research efforts. In com-

puter science the definition given by Abowd et al. [8]

is amongst the most adopted ones. Context-aware com-

puting focusing on modeling and sensing of context can

be found in [9, 10]. Traditional context models typi-

cally focus on the context of a person such as location,

devices, presence information, time, and action. Some

models include also user preferences specific to services

such as cost, speed, QoS, and mobility [11].

In collaborations, activities are the means to capture

the context in which human interactions take place. Ac-

tivities describe the goal of a task, the participants, uti-

lized resources, and temporal constraints. Studies re-

garding activities in various work settings are described

in [12]. They identify patterns of complex activities,

which are then used to derive relationships and activ-

ity patterns [13, 14]. The potential impact of activity-

centric collaboration is highlighted [15, 16] with special

focus on the value to individuals, teams, and enterprises.

Studies on distributed teams focus on human perfor-

mance and interactions [17, 18], even in Enterprise 2.0

environments [19]. Mixed service-oriented systems tar-

get flexible interactions and compositions of Human-

Provided and software-based services [20]. This ap-

proach is aligned with the vision of the Web 2.0, where

people can actively contribute services. In such net-

works, humans may participate and provide services in a

uniform way by using the HPS framework [21]. A sim-

ilar vision is shared by [22] who defines emergent col-

lectives which are networks of interlinked valued nodes

(services). In such collectives, there is an easy way to

add nodes by distributed actors so that the network will

scale.

Behavioral and Social Trust Models. Marsh [23]

introduced trust as a computational concept, including

a fundamental definition, a model and several related

concepts impacting trust. Based on his work, vari-

ous extended definitions and models have been devel-

oped. Some surveys on trust related to computer sci-

ence have been performed [24, 25, 26], which outline

common concepts of trust, clarify the terminology and

describe the most popular models. From the many ex-

isting definitions of trust, those from [25, 27] describe

that trust relies on previous interactions and collabora-

tion encounters, which fits best to our highly flexible

environment. Context dependent trust was investigated

by [23, 24, 25, 26].

Depending on the environment, trust may rely on the

outcome of previous interactions [6, 27], and the simi-

larity of interests and skills [28, 29, 30, 31]. Note, trust

is not simply a synonym for quality of service (QoS). In-

stead, metrics expressing social behavior and influences

are used in certain contexts. For instance, reciprocity

[27] is a concept describing that humans tend to estab-

lish a balance between provided support and obtained

benefit from collaboration partners. The application of

trust relations in team formations has been studied be-

fore, e.g., in [32] and [33]. Trust propagation models

[34, 35, 36, 37] are intuitive methods to predict rela-

tions where no personal trust emerged; e.g., transitive

recommendations.

The interplay of trust and privacy has been studied

in the areas of social networks [38] and e-commerce

[39]. Especially the latter work concludes that trust is

strongly related to information disclosure, and thus, pri-

vacy. Articles on the Web [2, 3] discuss the exploitation

of personal information and underline the role of pri-

vacy. Marsh discussed in [40] how trust models enhance

information sharing among community members.
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Engineering Self-adaptation in SOA. Enhanced

flexibility of complex systems is introduced by estab-

lishing a cycle that feeds back environmental conditions

to allow the system to adapt its behavior. This MAPE

cycle [41] is considered as one of the core mechanism

to achieve adaptability through self-* properties. While

autonomic computing allows for autonomous elements

and applies these principles to distributed systems, cur-

rent research efforts left the human element outside the

loop. Based on the observed context of the environ-

ment, different adaptation strategies can be applied [42]

to guide interactions between actors, the parameters of

those strategies, and actions to prevent inefficient use of

resources and disruptions. In the context of multi agent

systems (MAS), self-configuring social techniques were

introduced in [43]. A major challenge in adaptation and

self-configuration is to dynamically find the most rel-

evant adaptation parameter. Research relevant to this

issue can be found in [44].

Recently, trust in service-oriented systems has be-

come a very important research area. SOA-based in-

frastructures are typically distributed comprising a large

number of available services and huge amounts of inter-

action logs. Therefore, trust in SOA has to be managed

in an automatic manner. A trust management frame-

work for service-oriented environments has been pre-

sented in [45, 46, 47], however, without considering par-

ticular application scenarios with human actors in SOA.

Although several models define trust on interactions and

behavior, and account for reputation and recommenda-

tion, there is hardly any case study about the application

of these models in service-oriented networks. While

various theoretically sound models have been developed

in the last years, fundamental research questions, such

as the technical grounding in SOA and the complex-

ity of trust-aware context-sensitive data management in

large-scale networks are still widely unaddressed. The

technical realization of trusted information sharing in

the introduced collaboration network is related to selec-

tive dissemination of information (SDI) [48, 49]. SDI

deals with questions regarding which (parts of) data

are shared with others, and mechanisms to disseminate

data. We adopted concepts of SDI, such as the repre-

sentation of information through XML, or mechanisms

to process XML-based data.

3. The Science Collaboration Scenario

A typical environment for applying trusted informa-

tion sharing is a science collaboration network. It com-

prises scientists, members from national and interna-

tional research labs, and experts from the industry. Col-

laboration is supported by modern service-oriented ar-

chitectures that realize centralized people registries and

profile management, communication services, and data

sharing facilities. Network members collaborate to ad-

dress challenging research questions and to reach higher

impact of scientific disseminations. They conduct joint

project proposals, perform distributed software proto-

typing, and data analysis and visualization. Further-

more, certain participants can provide their support in a

service-oriented manner. For instance, they offer doc-

ument review services, or data analysis services, and

interact through precisely predefined interfaces. We

utilize the previously introduced Human-Provided Ser-

vices (HPS) framework [20] to embed humans acting as

services using SOA concepts. This includes WSDL de-

scriptions of interfaces, central registries, SOAP-based

interactions, and sophisticated logging facilities.

3.1. Emerging Trust Networks

We demonstrated the (semi-)automatic flexible de-

termination of trust in the above-mentioned service-

oriented collaboration environment in detail earlier [4,

6]. Briefly, our approach relies on the observation of

fundamental interactions, such as SOAP-based commu-

nication, coordination or execution messages. People

interact and use services when conducting activities.

Figure 1(b) depicts this fundamental concept. Network

members collaboratively perform activities of different

types. These activities structure relevant contextual in-

formation, including involved actors, goals, temporal

constraints, and assigned resources. So, we conclude

that an activity holistically captures the context of in-

teractions between participants [16]. Several activity

contexts are aggregated to uniform scopes, e.g., all ac-

tivities of a specific type (activity scope), or all activi-

ties belonging to a certain project (project scope). Trust

emerges from interactions and manual ratings of collab-

oration partners within those scopes. For instance, trust

can rely on the responsiveness and reliability of collabo-

ration partners, as well as on their collected experiences

and skills. As shown in Figure 1(b), trust is represented

by a directed relation from one network member ni (the

trustor) to another one n j (the trustee), and relies on

prior cooperative behavior in a given scope. These trust

relations are determined by periodically analyzing and

interpreting observed interactions and ratings of part-

ners. For example, the collaboration of network mem-

bers n1, n2, n3, and n4 in different scientific dissemi-

nation activities a1 and a2, leads to the establishment

of trust in one uniform ‘dissemination scope’. Finally,

a scale-free complex network emerges from coopera-
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Figure 1: Information sharing upon dynamically changing trust relations in service-oriented collaborations.

tions in typical research collaborations as investigated

by [50].

3.2. On Trusted Information Sharing

In a science collaboration network scenario, under-

standably no member will share novel, yet unpublished,

ideas carelessly. However, information sharing is es-

sential to discover new collaboration opportunities. The

challenge is to enable sensitive information sharing, that

adapts and restricts the view on information with respect

to changing trust relations. Therefore, we introduce the

concept of trusted information sharing. This concept

provides the means to share information, e.g., paper

drafts, recently submitted papers, or project documen-

tation, only with trusted network members who have

demonstrated their reliable and dependable behavior be-

fore. In this case, trust reflects a probability measure of

future collaboration successes, and therefore, potential

benefits from collaborations.

As depicted in Figure 1(c), trusted information shar-

ing is bound to trust scopes. For instance, if member

n1 established trust in n5 in the management scope (be-

cause they jointly performed several project manage-

ment activities successfully), n5 is allowed to access

n1’s data about referees’ contact details, planned future

projects, and personal organizational details. However,

no information dedicated to other scopes, such as scien-

tific dissemination, is shared. Hence, information shar-

ing is restricted to mandatory information in particular

scopes.

As trust relations emerge dynamically based on in-

teraction behavior of people, the amount of shared in-

formation is periodically adapted by the system and, in

the optimal case, needs no further manual intervention

of users. However, this approach works best in envi-

ronments with flat (or practically no) hierarchies, where

people may decide completely on their own about con-

ditions for information sharing. In enterprise collabo-

rations, with pre-determined communication paths and

static role models, mechanisms that override trust-based

sharing are required. But here, we focus on the depicted

science collaboration network that consists of people

with equal roles, rights and aims. We identified three

fundamental trust concepts to enable trusted informa-

tion sharing in the described environment:

Sharing based on Personal Trust Relations. Activ-

ity relevant artifacts are shared in a scope to different

extent (views), according to the degree of trust between

network members. For instance, in Figure 1(c) n1 grants

access to n5 to information in the management scope.

Sharing based on Recommendations. In case of

sparse trust networks, or low connectivity of certain

members, sharing based on personal relations only is

limited. Second-hand opinions, called recommenda-

tions, are utilized to overcome this problem. For in-

stance, n1 trusts n2, and n2 trusts n4 because of success-

ful previous collaborations in the dissemination scope.

If these successes rely on the compatibility of each

member’s working style, there is a high probability that

n1 might establish trust to n4 upon future interactions

(for transitive trust propagation see [34]). Hence, to fa-

cilitate the establishment of trust relations, n1 is encour-

aged to share pieces of information with the unknown

5



member n4. Sharing of data, such as parts from the per-

sonal profile, introduces n1 to n4 and supports the boot-

strapping of future collaborations [28].

Sharing based on Reputation. If network members

are trusted by several partners in the same scope, (i.e.,

they have more than one trustor), reputation can be de-

termined. For instance, n2 is trusted by n1 and n4.

Therefore, network member n3, who has not established

trust in others yet, can rely on this reputation (inferred

from single trust relations). So, n3 can either allow n2

to access parts of his personally managed information

(passive sharing), or by pushing information towards n2

(active sharing).

3.3. Evolution and Aging of Trust

Since network members may change their interaction

behavior over time, for instance, their goals and priori-

ties shift or they start to develop interests in new fields,

trust relations have to be altered too. However, trust re-

lations can become even closer through successful long-

term collaborations. These dynamics are indicated from

Figure 1(c) to Figure 1(d). Here, trust from n1 to n2

has been increased, thus n1 grants n2 even more access

to his personal files (see the filled document symbol).

While trust from n1 in n3 and n3 in n2 has emerged due

to closer collaboration, the relations from and to n4 have

been removed.

Especially in our science collaboration scenario, it

is inevitable to consider these trust dynamics. Imag-

ine, someone suddenly begins to behave unreliable, e.g.,

does not answer support requests or does not fulfill his

assigned activities any longer. In that case also the ac-

cess to critical information has to be restricted. In this

paper we discuss approaches to detect misleading be-

havior changes to guarantee timely updates of relations

in a managed Web of Trust. However, not only existing

relations are adapted, but new relations are introduced

and outdated relations removed.

4. On the Emergence of Trust Relations

In contrast to a common security perspective, we de-

fine (social) trust to rely on the interpretation of pre-

vious collaboration behavior [6] and may additionally

consider the similarity of dynamically adapting inter-

ests [29, 30]. Especially in collaborative environments,

where users are exposed to higher risks than in common

social network scenarios [38], and where business is at

stake, considering social trust is essential to effectively

guide interactions [39]. Hence, we define trust as fol-

lows [6, 25, 27]:

Trust reflects the expectation one actor has

about another’s future behavior to perform

given activities dependably, securely, and re-

liably based on experiences collected from

previous interactions.

Previously, we introduced a conceptual approach

for determining trust based on interactions that we

call the Cycle of Trust [4]. The cycle, adopting the

MAPE concept [41], consists of four phases, which are

Monitor, Analyze, Plan and Execute. Periodically run-

ning through these four phases establishes a kind of en-

vironmental feedback control, and therefore allows to

adapt to varying circumstances. Applied in our environ-

ment, we are able to infer trust dynamically during on-

going collaborations. Because this approach (Figure 2)

is fundamental for the design of our trust model, we

shortly recapitulate its mode of operation.

observe interactions 

and context

interaction 

context 2

interaction 

context 1

infer trust in scope 

I. Monitor

II. Analyze

III. Plan

IV. Execute

WSDL

WSDL

WSDL

WSDL

Resources

adapt existing and 

plan new collaboration

perform collaboration

Act
i

-v
ity

Resources

Act
i

-v
ity

Act
i

-v
ityAct
i

-v
ity

WSDL

WSDL

WSDL

Sco

pe

Sco

pe

Figure 2: The Cycle of Trust.

In the Monitoring Phase the trust management sys-

tem observes interactions between humans and services,

including their types, context and success. In the Ana-

lyzing Phase the interactions are used to infer trust rela-

tionships. For this purpose, interaction metrics are cal-

culated and interpreted using scope-aware personal trust

rule sets that depend on the purpose of and situation for

trust determination. The following Planning Phase cov-

ers the set up of collaboration scenarios, including user

activities and human-, and service compositions, tak-

ing the inferred trust relations into account. The Exe-

cution Phase provides support to enhance the execution

of planned collaboration, including observing activity
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deadlines, checking the availability of actors, and com-

pensation of resource limitations. The interactions of

actors are observed in the execution phase, therefore,

the loop is closed.

4.1. Interactions in Service-oriented Collaborations

Interactions in flexible collaboration environments on

the Web are typically not modeled in advance, but in-

teraction partners are discovered dynamically based on

collected experiences from previous interactions. Here,

we discuss the technical grounding to capture interac-

tions and their context.

4.1.1. Interaction Context Model

Community members interact to reach a predefined

goal. For instance, they request support, exchange in-

formation, delegate tasks, and coordinate actions to per-

form certain activities. Therefore, interactions always

take place within certain contexts. Figure 3 shows the

applied context model, where actors, described by

their profiles, perform activities. Activities re-

side in more abstract scopes, e.g., all activities of a

specific type (activity scope), or all activities belonging

to a certain project (project scope). For instance, sup-

porting the creation of white box test cases resides in

a software development scope. Furthermore, actors are

linked to collaboration partners in the network. These

relations that are bound to scopes are characterized

by various metrics that rely on previous interactions.
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Figure 3: Interaction context model: Linked Actors perform activities

that reside in scopes.

4.1.2. Interactions in SOA

Not only service interactions, but also human interac-

tions may rely on SOAP (e.g., see Human-Provided Ser-

vices [20] and BPEL4People [51]), which is the state-

of-the-art technology in service-oriented environments,

and well supported by a wide variety of software frame-

works. This fact enables the adoption of various avail-

able monitoring and logging tools for mixed service-

oriented systems. The XML-based structure of SOAP

messages is well-suited for message header extensions,

such as addressing and routing information, and annota-

tion with contextual elements (e.g., activity identifier).

These mechanisms allow for context-aware interaction

metric calculation, for instance, reliability, responsive-

ness, collected experience, and costs in a predefined

scope. We apply an interpretative inference of trust

based on these metrics. This approach is context de-

pendent, so in different domains and use cases the im-

pact of the same metrics varies. As interaction behav-

ior changes over time, trust alters too. Therefore, trust

deems to be an intuitive grounding for flexible adapta-

tion techniques in mixed service-oriented systems.

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:vietypes="http://viete.infosys.tuwien.ac.at/Type"
xmlns:hps="http://myhps.org/"
xmlns:rfs="http://myhps.org/rfs">
<soap:Header>
<vietypes:timestamp value="2010-03-21"/>
<vietypes:msgflags priority="urgent"/>
<vietypes:activity url="http://www.coin-ip.eu/Activity#42"/>
<wsa:MessageID>uuid</wsa:MessageID>
<wsa:ReplyTo>http://.../Actor#Florian</wsa:ReplyTo>
<wsa:From>http://.../Actor#Florian</wsa:From>
<wsa:To>http://.../Actor#Daniel</wsa:To>
<wsa:Action>http://.../Type/RFS</wsa:Action>

</soap:Header>
<soap:Body>
<hps:Request>
<rfs:subject>ACM taxonomy for my paper?</rfs:subject>
<rfs:requ>What ACM categories fit to my paper?</rfs:requ>
<rfs:resource>

<vietypes:resource type="paperdraft" uri="http://..."/>
</rfs:resource>
<rfs:keywords>research, paper, ACM taxonomy</rfs:keywords>

</hps:Request>
</soap:Body>

</soap:Envelope>

Listing 1: Simplified RFS via SOAP example.

Listing 1 depicts an example interaction with vari-

ous header elements. The most important extensions

are (see [6] for details on the implementation):

• Timestamp capture the actual creation of the mes-

sage and is used to calculate temporal interaction

metrics, such as average response times.

• Message flags, including priority of messages.

• Activity uri describes the context of interac-

tions (see [16] for activity model).

• MessageID enables message correlation, i.e., to

properly match requests and responses.

• WS-Addressing tags, besides MessageID, are

used to route requests through the network.
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The SOAP body transports the actually exchanged

message. In this example a request for support (RFS)

[52] shows how one actor requests some help from an-

other one in the science collaboration scenario.

4.1.3. Social Relation Metrics and Network Model

Relation metrics describe the links between actors by

accounting for (i) recent interaction behavior, (ii) pro-

file similarities (e.g., interest or skill similarities), (iii)

social and/or hierarchical structures (e.g., role models).

However, we argue that social trust relations largely de-

pend on personal interactions.

We model a community of actors with their social re-

lations as a directed graph G = (N, E), where a node

ni ∈ N denotes a network member, and an edge ei j ∈ E

reflects a relation from ni to n j. Since interaction behav-

ior (that determines relations) is usually not symmetric,

actor relations are represented by directed links in our

network model. For instance, an actor ni might serve n j

reliably, but not the other way around.

Metrics, calculated on top of observed SOAP inter-

actions and modeled profile data, annotate the relations

between network members in G. The following classes

of metrics are managed (i) Interaction Metrics describe

the interaction behavior as explained before, such as an

actor’s responsiveness and reliability in distinct scopes.

(ii) Similarity Metrics provide information about skill-,

feature-, or expertise similarities, depending on the type

of actors. Similarity metrics are an indicator for replace-

ability of actors. (iii) Trust Metrics are interpreted from

interaction- and similarity metrics, e.g., personal trust,

symmetry of trust relations (bidirectional trust) and trust

trends in certain time intervals. See next subsection

for details on their determination. (iv) Collaboration

Metrics are bound to a user, and describe independent

from collaboration partners someone’s previous experi-

ences, such as collected expertise by performing activ-

ities, and behavior, e.g., reciprocity [27]. Furthermore,

edge metrics can be aggregated to calculate collabora-

tion metrics; for instance, an average value of some-

one’s responsiveness or availability. (v) Group Metrics

provide information about average values and distribu-

tion of node- and edge metrics in a community, there-

fore, they are a valuable means to determine a metric

value relative to others in the same group.

Table 1 shows some example metrics that may de-

scribe actor relationships, and that are calculated from

logged SOAP calls and user-provided profile informa-

tion. Note, as described before, these metrics are deter-

mined for particular scopes. The availability of an actor

can be high in one scope, but much lower in another one.

Table 1: Example metrics describing actor relations.

metric name range description

availability [0,1] ratio replied to all incoming requ.

response time [0,96] average response time in hours

success rate [0,1] amount of successful activities

reciprocity [-1,1] ratio of served to sent requests

experience [0,∞] number of served support requ.

manual reward [0,5] manual feedback scores

costs [0,5] price for requesting support

interest similarity [0,1] interest profile overlap

In this paper, we make use of the following metrics to

infer trust in the science collaboration scenario:

Interest Similarity isim. This metric determines the

overlap of actor interests, which is an important mea-

sure to find collaboration partners in research. We man-

age keywords used by paper authors ni and n j as interest

profile vectors pni
and pn j

respectively (see [29] for de-

tails), and determine the similarity of profiles through

the cosine between their profile vectors (Eq. 1). The

result is a value between 0 (no overlap) and 1 (full over-

lap).

isim(ni, n j) = cos(pni
, pn j

) =
pni
· pn j

|pni
||pn j
|

(1)

Reciprocity recpr. A typical social behavior met-

ric is reciprocity [27] that reflects the ratio between

obtained and provided support in a community. Let

REQ(ni, n j) be the set of ni’s sent support requests to

n j, and RES (ni, n j) the set of ni’s provided responses to

n j’s requests. Then we define reciprocity in [−1, 1] as

in Eq. 2; hence, 0 reflects a balanced relation of mutual

give and take.

recpr(ni, n j) =
|REQ(ni, n j)| − |RES (ni, n j)|

|REQ(ni, n j)| + |RES (ni, n j)|
(2)

Availability avail. This metric describes ni’s avail-

ability for n j’s requests, i.e. the amount of answered

requests. The result of Eq. 3 is a value in [0, 1].

avail(ni, n j) = 1 −
|REQ(n j, ni)| − |RES (ni, n j)|

|REQ(n j, ni)|
(3)

4.2. Trust Models and Management

The fundamental approach to automatic interaction-

based trust inference is depicted in Figure 4. As moti-

vated in the introduced use case, people interact to per-

form their tasks. This work is modeled as activities,

that describe the type and goal of work, temporal con-

straints, and used resources. As interactions take place
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in context of activities (Figure 4(a)), they can be cate-

gorized and weighted. Interaction logs are used to infer

metrics that describe the relation of single actors (Fig-

ure 4(b)), such as their behavior in terms of availability

and reciprocity.

WS

DL

A
2

A
1

(a) Interactions.

………
Relation Metrics:
- Behavior
- Interests
- Social Links

(b) Relation metrics.

WS

DL

Scope

(c) Scoped trust.

Figure 4: Trust emerging from interactions: (a) interaction patterns

shape the behavior of actors in context of activities; (b) (semi-) au-

tomatic rewarding of behavior and calculation of interaction metrics;

(c) trust inference in scopes by interpretation of metrics.

We support the diversity of trust by enabling the flex-

ible aggregation of various interaction metrics that are

determined by observing ongoing collaborations. Fur-

thermore, data from other sources, such as human pro-

files or social relations (e.g., FOAF3, XFN4), as well

as service features and capabilities may influence the

trust inference process. Finally, available relation met-

rics are weighted, interpreted, and composed by a rule

engine. The result describes trust between the actors

with respect to scopes (Figure 4(c)). For instance, trust

relations in a scope ‘scientific dissemination’ could be

interpreted from interaction behavior of actors in a set

of paper writing activities.

4.2.1. Flexible Behavioral Trust and Reputation Model

The interaction behavior of a network member ni to-

ward n j is described by various metrics M(ni, n j). In

this work, we use two different approaches to infer trust

upon these metrics:

• Arithmetic Calculation is used to calculate trust by

weighting metrics to obtain average values. This

simple model is quite effective under certain as-

sumptions such as simple interaction types and pat-

terns.

• Rule-based Interpretation allows for more com-

plex business rules to interpret metrics. For in-

stance, actors need to reach certain scores of pre-

defined metrics to be considered trustworthy.

Arithmetic Calculation. Interaction metrics are nor-

malized to the interval [0, 1] either according to prede-

fined upper and lower bounds, or dynamically adapted

3Friend-Of-A-Friend http://xmlns.com/foaf/spec/
4XHTML Friends Network http://www.gmpg.org/xfn/

according to the highest and lowest values in the whole

community. Furthermore, weights need to be spec-

ified, either by users or system administrators. The

weighted sum of selected metrics build the actual trust

value τs(ni, n j) ∈ [0, 1], and reflects recent evidence that

an actor behaves dependably, securely and reliably. In

Eq. 4 trust is calculated from metrics mk ∈ M(ni, n j)

that are weighted by wk with
∑

k wk = 1.

τs(ni, n j) =
∑

∀mk

mk(ni, n j) · wk (4)

Rule-based Interpretation. Interaction metrics are

processed by individually configured fuzzy (E)CA rules

((event)-condition-action). These rules define condi-

tions to be met by metrics M for interpreting trustwor-

thy behavior, e.g., ‘the reciprocity of the trustee must be

positive’ or ‘a trustworthy software programmer must

have collected at least average experiences in software

integration activities’. The definition of the linguistic

variables, i.e, the meaning of low, medium, high, pos-

itive, negative, balanced etc. is either (i) defined stat-

ically, or (ii) dynamically adapted by accounting for

average values of members in the whole community.

Rules reflect a user’s trust perception, e.g., pessimists

may demand for stricter trustworthy behavior, than op-

timists. So, these rules are either specified by the users,

or globally by administrators. Note, only the individual

definition of rules allows the expression of personalized

trust requirements. However, individual rules highly in-

crease the computational complexity for trust inference.

if isim is high and recpr is positive then τ is high
if isim is high and recpr is balanced then τ is med
if isim is high and recpr is negative then τ is med
if isim is med and recpr is positive then τ is high
if isim is med and recpr is balanced then τ is med
if isim is med and recpr is negative then τ is low
if isim is low and recpr is positive then τ is med
if isim is low and recpr is balanced then τ is low
if isim is low and recpr is negative then τ is low

Listing 2: An example rule base for given linguistic variables interest

similarity isim, reciprocity recpr, and trust τ.

Listing 2 shows an example for such rule definitions

used by a fuzzy rule engine. This rule set determines

the aggregation of two metrics: interest similarity (isim)

and support reciprocity (recpr). These two metrics are

typical for a science collaboration as discussed in the

motivating scenario of this paper. For instance, some-

one looking for beneficial collaborations will neglect

costs or responsiveness of actors and focus more on

their similarity of interests. After determining the lin-

guistic representation of trust (i.e., low, medium, high,

full) a real value in the interval [0, 1] is obtained through

defuzzification. However, the detailed description of the
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utilized inference mechanisms have been studied in [6]

and are out of scope of this paper that focuses on the

temporal evolvement of existing relations.

4.2.2. Trust Emergence through Delegations

Actors in the science collaboration scenario may

request support from potential collaboration partners.

However, the request receiver does not need to process

all requests directly. As in real life, they can delegate

them to other members due to various reasons. For in-

stance, an actor may be overloaded and therefore, not

be able to process a request in time. On the other side

an expert can be ‘overqualified’, therefore delegate re-

quests to lower experienced but sufficiently skilled ac-

tors. Moreover, some actors may shield others from re-

quests, e.g., only a team leader receives requests directly

that s/he delegates then to team members.

We introduce a triad interaction pattern (Figure 5)

that realizes delegations of requests within the same

contextual or organizational scope, e.g., between actors

in the same knowledge domain (of course, one actor

may be ‘located’ in several scopes). The triad pattern is

well known as triadic closure in social networks [53]. A

triad proxy n2 receives a request and forwards it to one

of its well-trusted partners. In case of complex prob-

lems, a request can be split into sub-requests to reduce

response times. Furthermore, the complete request can

be delegated to more than one actor to increase relia-

bility, i.e., the chance to get a suitable response. Fi-

nal responses are not handled by the triad proxy. As all

participating entities in this pattern belong to the same

scope, e.g., knowledge domain, the finally serving ac-

tor(s) may respond directly to the requester. A typical

use case is load balancing in teams of people with same

roles.

requ’

requ’’

n3

requester

n1

(n1,n2)

(n1,n3)

(n2,n3)

requ’’’

requ

resp

n4

n5

proxy 

n2

Figure 5: Interactions following the Triad Delegation Pattern.

From the requester n1’s point of view, the triad proxy

n2 receives reduced rewards for delegating but not pro-

cessing the request. The actually supporting actor n3 re-

ceive rewards from the triad proxy, because of accepting

the delegated request. This reward is also reduced, be-

cause the originator of the request is not the triad proxy,

and the triad proxy has limited interest in successfully

processing the request (compared to one of his own re-

quests). However, the requester honors the help pro-

vided by the actually supporting actor(s) through dele-

gations equally compared to directly supporting actors.

The triad delegation pattern is an intuitive means to

facilitate the emergence of new trust relations. For in-

stance, because of n2’s delegation, n3 gets introduced to

n1. If n3 reliably serves n1’s request trust is built, and

n1 will consider n3 as trustworthy collaboration partner

when sending future requests.

5. Adaptive Trust Management

We argue that trust from a social perspective is nei-

ther identified in advance nor defined statically. It rather

emerges dynamically upon interaction behavior of hu-

mans and services, and evolves over time. Sophisticated

trust models need to account for these properties to re-

flect real situations as close as possible. Moreover, in

highly flexible environments, interaction behavior may

alter quickly and, therefore, the underlying trust model

has to be updated in sufficiently short cycles. How-

ever, in large-scale networks with potentially thousands

of participants, updating relations in short intervals is

not feasible due to limitations of computational power.

Hence, trust relations have to be updated and altered se-

lectively.

Aging models for the WWW [54] describe com-

mon characteristic change rates of Web pages. Based

on that knowledge, methods have been introduced that

let search engines decide about suitable update inter-

vals of their search indexes. If update intervals are

too long, then outdated information is managed by

search engines. However, for update intervals being

too short, suitable usage of limited computational power

and bandwidth is no longer guaranteed, and index en-

tries are refreshed for pages that have not changed in

the meanwhile.

Models that account for the dynamics of trust, are ap-

plicable in various kinds of flexible interaction environ-

ments, including the following:

• SOA-based Service Networks. Selecting the most

beneficial services for compositions, by account-

ing not only for functional requirements, but also

for reliability and dependability upon recent be-

havior, is a key research challenge in service-

oriented computing. Especially, if facing large sets

of potential services to be used, trust-supported

discovery can considerably enhance the selection

process.
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• Social Networks. In today’s social networks peo-

ple declare their trusted friends manually in static

lists, however, based on their interaction behavior,

interest similarities and joint group memberships,

trust can be predicted to some extent automatically

[28, 31]. This feature relieves members from keep-

ing track with the real situation and updating their

friend lists manually. Also, recommendations of

people, groups or items in social networks can be

improved.

In this paper, we mainly address the following two is-

sues of dynamic trust models resulting from interaction

flexibility:

• Efficiency of Trust Update Models in terms of

performance is realized by carefully selecting the

most critical trust relations in a network to be re-

freshed in adaptive update cycles. Scheduling of

updates fundamentally depends on the actors’ in-

teraction behavior, and the community’s utility of

frequent updates.

• Effectiveness of Trust Update Models in terms of

functionality deals with the application of algo-

rithms to let a model reflect the dynamically chang-

ing environment as close as possible. In particu-

lar, our approach accounts for the different lifecy-

cle phases of relations: emergence-, update-, and

aging phase.

5.1. Challenges

Trust relations are not statically defined, but emerge

and evolve over time. Thus, an efficient trust model

must frequently refresh its data to keep track of the real

situation. We model the following fundamental lifecy-

cle phases of trust relations to account for their dynamic

nature and temporal aspects: (i) Trust Emergence deals

with introducing new trust relations upon ongoing in-

teractions. (ii) Trust Update deals with refreshing ex-

isting relations based upon experiences made in recent

interactions. (iii) Trust Aging deals with degrading and

deleting outdated trust relations.

5.1.1. Trust Emergence

Several concepts of trust prediction exist to intro-

duce new relations between actors that may develop

trust in the future. Recent research shows, that there

is a strong dependency between interest similarities and

trust [28, 29, 30]. Furthermore, someone could recom-

mend trusted collaboration partners to third persons, be-

cause of their distinguished expertise and reliable work-

ing style. However, there is no evidence that someone’s

partners will behave trustworthy toward third persons.

Finally, this means that trust can only be reliably in-

ferred from personal experiences, i.e., by analyzing in-

teractions. We consider the following two fundamental

types of trust emergence.

Trust Prediction. We predict trust based on recom-

mendation and reputation mechanisms, and let espe-

cially newcomers enjoy initial trust. These trust rela-

tions given in advance are subject to updating and aging,

and hence, are either weakened or strengthened over

time.

Trust Inference. Trust is only built upon personal ex-

periences from recent interactions and, therefore, only

if there is a sufficient amount of interactions to reliably

infer trust. We enable the application of this concept

through delegations, where untrusted actors start inter-

acting.

The choice for one or another method strongly de-

pends on the environment. In the case of trust predic-

tion, new relations emerge rather quickly, however, out-

dated relations require correction, i.e., removal after un-

successful collaborations. Consider, applying trust for-

mations upon prior evidence may be impossible since

humans tend to interact predominantly with already

well-known and trusted partners and newcomers are left

out of collaborations.

5.1.2. Trust Update

Since the behavior of actors in a network may change

due to various reasons, e.g., shift of interests, work over-

load, and search for new work opportunities, trust rela-

tions will alter as well. Hence, frequent synchroniza-

tion with the real world is critical to computational trust

models. For that purpose, the behavior of actors is sam-

pled (i.e., observed through monitoring) in subsequent

intervals and results are used to update trust relations.

A major challenge is to determine the appropriate sam-

pling intervals (e.g., see also [55]). Figure 6 visual-

izes two fundamental challenges of trust update mecha-

nisms:

I  (n1,n2)

I  (n1,n2)

ts

ts
s1

s2

n1 n2

Scope s1

Scope s2

discrete 

ticks

discrete 

ticks

s1

s2

(a) Interaction sparsity.

1

n1

  (n1,n2)

  (n3,n2)

0

discrete 

ticks

n2

n3

(b) Actor (non-)uniformity.

Figure 6: Challenges for trust update mechanisms.
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Interaction Sparsity. In different scopes s1, s2 oc-

cur varying types and amounts of interactions. Since a

larger amount of interactions is needed to detect trends

in an actor’s behavior (e.g., his responsiveness, avail-

ability), it is a challenging task to set the right size of

sampling intervals (ts). Intervals that are too short pro-

hibit reliably behavior analysis; however, if intervals

are too long, sudden changes of behavior cannot be de-

tected accordingly. The length of ts mainly depends on

the scope and the regular interaction behavior of actors

therein.

Actor Uniformity. The uniformity describes the con-

sistency of an actor (i) towards the same partner over

time; (ii) towards different interaction partners. In Fig-

ure 6(b) n2 behaves consistently trustworthy towards n1,

therefore, trust τ(n1, n2) remains high over several sam-

pling intervals. However, n2 changes dynamically his

behavior toward n3, and hence, n3’s trust in n2 changes

rapidly over time. Intuitively, in the second case of dy-

namically changing behavior, smaller sampling inter-

vals are required to capture n2’s behavior changes, while

in the first case, the sampling interval to refresh already

well-known constant behavior can be longer. Apart the

actors’ interaction behavior, external adaptation require-

ments may influence the determination of appropriate

sampling intervals; e.g., in the case of pre-defined up-

per time limits to react on changes in time.

5.1.3. Trust Aging

If the amount of interactions between two actors falls

below a certain threshold, or two actors completely stop

interacting, relations undergo an aging process. Since

in this phase no further evidence occurs for reliably in-

teraction behavior, relations are not updated any longer.

Therefore, trust relations will degrade to a neutral state

and are finally removed from the graph G.

Intuitively, well established and consolidated long-

term relations mature slower compared to fragile short-

term relations. Hence, strengthened long-term relation-

ships are able to bridge longer ‘interaction gaps’, while

short-term relations disappear faster.

5.2. Adaptive Trust Update and Aging Models

In our model, the selection of relations to be updated

and update intervals relies on two influential factors (i)

the variance of user behavior, reflected by the dynam-

ics of interaction metrics, (ii) the sparsity of interaction,

i.e., a certain amount of interactions is required to reli-

ably calculate interaction metrics.

Note, for the initial establishment of trust relations in-

teractions are not mandatory, but relations can be intro-

duced manually. This is a sufficient assumptions, as in

real environments actors are selected based on recom-

mendations or reputations and, therefore, enjoy initial

trust. However, once established, manually introduced

trust relations are automatically updated by the system

considering trust aging parameters. The advantage of

manually introduced relations is the reduced effort when

processing interaction logs. In this case, only interac-

tions between actors that also share a trust relation need

to be handled.

5.2.1. Fundamental Update Mechanisms

Figure 7 summarizes the fundamental mode of op-

eration of our temporal trust management approach.

Interactions from ni to n j (a), occurring between two

sampling instants (in this example every 20 ticks), are

utilized to calculate interaction metrics M(ni, n j) (b).

These metrics describe actor n j’s behavior toward ni in

scope s, and is inferred in consecutive sampling inter-

vals ts; for instance, n j’s availability to ni’s requests as

well as its reciprocity. In the given example, the avail-

ability remains high, while n j’s reciprocity toward ni is

unsteady. We assume trust τs(ni, n j) relies on both met-

rics. Therefore, in (c), recent trust τ̂s(ni, n j), grounded

in previous interaction behavior of n j toward ni in time

interval ts, is inferred. This τ̂s(ni, n j) is visualized in

Figure 7(c) at the sampling instants.
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Figure 7: Illustrative example for updating trust based on recent inter-

action behavior.

Evolving long-term trust τs
i

(see Figure 7(d)) is up-

dated periodically in successive time intervals ti (e.g.,

days in our motivating scenario), numbered with con-

secutive integers starting with zero. We denote the per-

sonal trust value calculated at time step i as τs
i
. As

trust is evolving over time, we do not simply replace
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old values, i.e., τs
i−1

, with newer ones, but merge them

accordingly. For this purpose we apply the concept of

exponential moving average (EMA)5, to smoothen the

sequence of calculated trust values as shown in Eq. 5.

Using this method, we are able to adjust the importance

of the most recent behavior (leading to τ̂s) compared to

historical values. The smoothing factor α ∈ [0, 1], can

be dynamically selected. The impact of the most recent

trust values τ̂ on well established long-term relations

might be lower than on recently emerged and still frag-

ile short-term relations. For the reason that long-term

relations are normally based on large sets of previous

experiences and sporadic short-term behavior changes,

e.g., sporadic unreliability, may not have major impact.

Indeed, this behavior is subjective, and our model can

not dictate the application of this feature, but provides

the means to cover such situations appropriately.

τs
i = α · τ̂

s + (1 − α) · τs
i−1 (5)

5.2.2. Adaptive Sampling

The fundamental approach simply updates τi at each

time tick ti, and the interval between instant ti and ti+1

is always ts. However, in most real situations an adap-

tive sampling interval ts is desired due to two reasons:

(i) interaction sparsity, and (ii) actor (non-) uniformity

(see Section 5). Intuitively, trust relations in erratic ac-

tors that change their behavior quickly and dynamically

have to be updated more often, than the relations to sta-

ble actors. From a performance perspective, longer up-

date cycles of stable connections allows the system to

focus on unstable connections. Hence, while in the fun-

damental case we set the update interval in a particular

scope s to ts
u = ts (equal to the system sample interval),

we introduce now an approach to adapt ts
u dynamically

within the limits according to Eq. 6.

ts
umin
≤ ts

u ≤ ts
umax

(6)

Both limits are pre-configured and determined by the

interaction sparsity in the scope of trust. Furthermore,

ts
umin
= λ1 · ts and ts

umax
= λ2 · ts and λ1 ≤ λ2 for λ1, λ2 ∈

N. The basic challenge is to find appropriate update

intervals ts
u, in terms of efficiency and effectiveness of

trust management. Remember, although static relations

do not need frequent updates, sudden behavior changes

must not be neglected. The mode of operation of our

adaptive approach is depicted in Figure 8.

We interpret actor behavior, reflected by metrics M as

a continuous ‘signal’ that is sampled from interactions

5http://www.itl.nist.gov/div898/handbook/
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Figure 8: Illustrative example of adaptive trust update intervals

through triggering sudden behavior (metric) changes.

in consecutive time intervals ts. Therefore, metrics re-

flect the changeability of an actor’s behavior. Figure

8(a) shows the temporal evaluation of two interaction

metrics, e.g., availability and reciprocity. While the val-

ues of one metric are nearly constant over time, the other

suddenly drops at time tick 40, remains low, and in-

creases again at tick 180. We detect such rapid changes

with precisely configured event triggers. Once sudden

events, such as the variance of the most recent values is

above a threshold, or the number of unreplied requests

is considerably high, an update operation is triggered

(see tick 40). Then, when the metric values are stable,

ts
u is extended by one ts in each update cycle. In our ex-

amples ts = 20, therefore, after tick 40 the next update

intervals have the lengths ts(= ts
umin

), 2 · ts, and 3 · ts.

However, at tick 180 a sudden behavior change is de-

tected and trust is sampled as soon as possible (instead

of waiting a period of 4 · ts.

Typically some simple and easily computable metrics

that characterize the actor behavior and can efficiently

capture behavior changes, are used to trigger update ac-

tions. While at least this set of metrics, is calculated

at each ts, the larger amount of (more complex) met-

rics and finally trust are refreshed only after adaptive

ts
u. This is visualized in Figure 8(b). Sampled trust τ̂

is refreshed only at intervals ts
u. However, a temporal

evaluation (Eq. 5) is still applied at each ti (as in the

fundamental approach), but based on the most recent τ̂.

5.2.3. Trust Aging Model

As social relations in the real world degrade if people

do not frequently interact, also trust relations underlie

an aging process. While it is intuitive that relations will

become invalid over time, it is quite hard – if not impos-

sible – to realistically reflect this aspect in a mathemat-

ical model. Our approach, as defined in Eq. 7, provides

some parameters for tuning the aging process, while it

is not too complex to be applied in real environments.

τs
n = τ

s
i · e

−(τs
n−1
·∆t)2γ

(7)
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The variable τs
i

represents the latest determined trust

value based on interactions in the update procedure that

is degraded exponentially, configured by the decay fac-

tor γ (γ ≥ 1). So, trust τs
n at time tick tn is calculated by

degrading τs
i

depending on the time span tn − ti.

The quality of relationships, i.e., trust, suffers if re-

lations are not periodically refreshed through new in-

teractions. While immediately after updating a relation

(∆t = 0), trust is not altered (τn = τi), the aging process

produces trust results asymptotic to zero with ∆t → ∞

as shown in Figure 9(a).
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Figure 9: Illustrative example of trust aging from different trust levels

τ and for different decay factors γ.

In our model, trust degrades with different speed for

different trust levels, i.e., relations between several ac-

tors that stopped interacting at the same time are re-

moved simultaneously from the network, independent

from their varying levels of trust. The configuration

of our aging model is still an open issue. On the one

side domain experts could care for this based on best

practice, on the other side there exist concepts that let

systems adapt parameters autonomously to optimize the

aging process. However, we design our trust model to

be flexibly enough to cover various demands on tem-

poral properties; e.g., sampling intervals (ts), impact of

new values (α), decay factor (γ) (see Figure 9(b)).

Adaptive aging refers to the dynamic adaptation of γ,

hence, the older a relation, the slower may be the ap-

plied aging process. Furthermore, as in real life, the

decay of trust can be comparably fast in the beginning,

while the actual removal of relations takes longer time.

The adaptation of the decay factor may depend on ac-

tors interaction consistency (see actor uniformity in the

beginning of this section).

5.3. Dynamic Web of Trust Algorithm

Here, we present an algorithm that applies all afore-

mentioned concepts to manage the dynamics in the

Web of Trust upon observed interactions. This ap-

proach accounts for contextual constraints of interac-

tions (scopes), properties and evolutions of trust rela-

tions, selective and adaptive update intervals, and the

variance of measured metrics. Algorithm 1 demon-

strates the adaptation of relations in the Web of Trust.

Algorithm 1 Update of trust graph GT = (N, ET ) with

recently captured interaction logs between N′ ⊆ N in

GI = (N, EI) every discrete tick ti.

1: /* access GI = (N, EI ) in interaction databases */

2: /* access GT = (N, ET ) in the trust database */

3: for each ni ∈ N′ do

4: for each n j ∈ N′ do

5: for each s ∈ S copes(edge(ET , ni , n j)) do

6: if |EI (ni , n j)| > ϑ
s
I

then

7: /* if enough interactions to reliably infer trust */

8: eτ = ET (ni, n j))

9: if ∃ τs ∈ eτ then

10: /* update of existing relations scheduled */

11: if isUpdateScheduled(eτ , s) then

12: /* previously scheduled update */

13: Ms(ni, n j) = calcMetrics(EI (ni, n j), s)

14: τ̂s(ni , n j) = infTrust(ni , n j ,M
s(ni, n j))

15: ts
u = getUpdateInterval(eτ , s)

16: if ts
u ≤ ts

umax
then

17: scheduleUpdate(eτ , s, t
s
u + ts)

18: else

19: scheduleUpdate(eτ , s, t
s
umax

)

20: else

21: /* trigger changing behavior */

22: Ms
T

(ni, n j) = calcTriggers(EI (ni, n j), s)

23: if isUpdateTriggered(eτ ,M
s
T

(ni, n j)) then

24: Ms(ni, n j) = calcMetrics(EI (ni , n j), s)

25: τ̂s(ni, n j) = infTrust(ni , n j ,M
s(ni, n j))

26: scheduleUpdate(eτ , s, στ, t
s
umin

)

27: else

28: /* stable behavior, no updates */

29: τ̂s(ni, n j) = τ̂
s
i−1

(ni , n j)

30: /* smoothen trust values */

31: τs
i
(ni, n j) = update(τs

i−1
(ni, n j), τ̂

s(ni, n j))

32: else

33: /* introduce new trust relations */

34: Ms(ni , n j) = calcMetrics(EI (ni, n j), s)

35: τs
i
(ni, n j) = setInitialTrust(Ms (ni, n j))

36: addTrustRelation(eτ , s, τ
s
i
)

37: scheduleUpdate(eτ , s, t
s
umin

)

38: else

39: /* if too few interactions */

40: ts
u = getUpdateInterval(eτ , s)

41: if ts
u ≤ ts

umax
then

42: /* increase update intervals */

43: scheduleUpdate(eτ , s, t
s
u + ts)

44: else

45: /* age out existing relations */

46: applyAging(eτ , s)

47: /* write back updated GT */

In detail, it models the emergence of new relations

(Line 33), updates of existing ones (Line 10), and their

aging in case no interactions take place between trusted

actors (Line 39).
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Our algorithm manages trust between a subset of

nodes N′ ⊆ N in the Web of Trust GT = (N, ET ) for

a predefined set of scopes (depending on already exist-

ing relations that need to be updated – see Line 5). In

case the amount of interactions to reliably infer behav-

ior is above a predefined threshold (ϑs
I

depends on the

‘usual’ amount of interactions in a scope), new relations

are introduced and existing ones updated respectively.

New relations are added to GT if a significant amount

of interactions took place between two actors but no

trust relations exist (Line 33). The trust level is inferred

from measured metrics and updates are scheduled as

soon as possible – still accounting for interaction spar-

sity in the given scope (ts
umin

).

Updates are performed due to two events: (i) an up-

date has been scheduled for a given relation; (ii) a rapid

change in an actor’s behavior has been triggered and

thus, connecting trust relations have to be updated to re-

flect this change in the model accordingly. In the first

case (see Line 11), update cycles are extended up to

ts
umax

for optimization purposes. Hence, for longer stable

interaction behavior of actors, update intervals are in-

creased too. However, if considerable sudden changes

in behavior are detected (e.g., someone does not reply to

requests anymore) (see Line 21), an immediate update

is triggered and consecutive updates are performed in

shorter intervals until stable behavior is detected again.

If the amount of interactions drops below a given

threshold ϑs
I
, update intervals are increased to collect

a sufficient amount for reliably behavior determination.

However, if the update interval would become too long

(> ts
umax

), the previously described aging process is ap-

plied. Function applyAging() (Line 46) is imple-

mented as Eq. 7 that continuously degrades trustworthi-

ness, and finally, removes an existing trust relation from

the graph model. Algorithm 1 is periodically executed

to keep GT up-to-date. The execution interval needs to

be adapted to the inherent dynamics of the environment.

Since the algorithm processes interaction logs and rela-

tions only for a subset N′ of all nodes, computational

effort can be distributed over several instances that han-

dle only parts of the whole Web of Trust GT .

6. The Trusted Information Sharing Framework

We describe our Trusted Information Sharing frame-

work that has been first introduced in [7] and extend it

to meet requirements of the science collaboration sce-

nario discussed in Section 3. We distinguish between

two modes of sharing: (i) Activity-centric sharing ac-

counts for the currently jointly processed activity of ni

and n j. Therefore, information is shared to foster on-

going collaborations. (ii) Scope-centric sharing is about

information sharing due to trust in a scope, but without

accounting for a concrete activity. This kind of shar-

ing is useful to facilitate future collaborations, i.e., the

creation of new joint activities.

Besides the modes we distinguish two different shar-

ing styles: (i) Active Sharing pushes information to ac-

tual or potential collaboration partners (depending on

the sharing mode), e.g., a call for paper via notification

and announcement services. (ii) Passive Sharing grants

access to personal information when requested by other

network members, e.g., when the collaboration network

is searched for dissemination opportunities. We focus

on the latter kind of sharing style that can be understood

as a dynamic access control system.

6.1. Sharing Framework

The main components of our framework and their

connections are depicted in Figure 10. The backend

services comprise one or more Information Reposito-

ries that hold various kinds of information, encoded in

XML and defined by XML Schemes (XSDs). An Infor-

mation Catalog enables users to link information from

repositories to sharing scopes. Activities, as introduced

in our motivating scenario, are managed by an Activ-

ity Management Service and act as the glue for multi-

dimensional collaboration data (see the context model

in Figure 3). Especially trust relations that emerge from

interactions between users during the execution of ac-

tivities, are provided by the Trust Network Provider.

A Sharing Rule Management Service provides trust re-

quirements for information sharing, e.g., a minimum

degree of personal trust or reputation, and the Sharing

View Management Service stores transformation scripts

(XSLTs) to customize the view on XML-encoded infor-

mation.

The Administration Middleware is utilized by users to

register potentially shared information in the platform.

This component provides all features to enable the up-

load of XML documents, the creation of catalog entries

to register the ownership of information and sharing in

context of activities, the retrieval of interaction metrics

and trust values of relations to information consumers,

and the definition of sharing rules and restricted views

on the uploaded documents. In the end-user collabora-

tion portal an Administration Tool is provided, that com-

municates with the Administration Middleware. Users

can register and unregister information, and create and

modify their sharing rules. Furthermore, they have the

ability to register new information types (XSDs).
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Figure 10: Sharing framework overview.

The Sharing Proxy enables users to retrieve informa-

tion from collaboration partners. This component uti-

lizes all the aforementioned SOAP-based backend ser-

vices and restricts information based on sharing views

picked by evaluating sharing rules. Technically, this is

realized by transforming XML data through applying

XSLTs depending on trust relations between informa-

tion owner and requester. Higher trust allows more de-

tails to be shared. Since the Sharing Proxy has to serve

many concurrent requests and heavily relies on SOAP-

based Web services in the backend, we integrated a

Web service cache that buffers all responses from the

backend. The configuration of cache update intervals

is closely linked to the volatility of trust relations and,

hence, to update and aging mechanisms discussed be-

fore. The End-User Information Sharing Tool provides

a convenient user interface that enable people to browse

the Web of Trust and retrieve information that is shared

by collaboration partners. Each user of this tool re-

trieves his/her individually restricted view on shared in-

formation based on their personal relations.

6.2. Administration Tool

Figure 11 shows the end-user’s perspective of trusted

information sharing. In the first step, as depicted in

Figure 11(a) the user picks ongoing activities from a

list where s/he wants to publish information. Second,

the user uploads the actual document. The document

content is modeled as an XML structure and follows a

specific schema (XSD). In our example, the user shares

a paper draft consisting of title, authors, abstract, key-

words, and body, within a dissemination activity. Af-

ter uploading the document, it is parsed in the adminis-

tration middleware and all available XML tags are ex-

tracted. Then (Figure 11(b)), users are able to define

sharing rules on these XML tags. All uploaded infor-

mation is shown to others by default if no further re-

strictions are defined. Let us assume for the depicted

example that the owner of the paper draft only wants

close collaboration partners to see participating authors.

Thus, after upload the user restricts access to the au-

thor section of the paper draft. A constraint is for in-

stance that a certain requester of the document need

to be personally trusted by the document owner with a

value equal or higher than 0.5 (τ ∈ [0, 1]). (Note, values

and limits can be set upon best practices or suggestions

from domain experts – see [6]). The specification of this

rule produces two artifacts: (i) The sharing view is an

XSLT that transforms the initial paper draft to a version

with an omitted authors section. (ii) The sharing rules

model constraints based on relation metrics for trans-

forming the document. Thus, whenever someone who

is not personally trusted with τ ≥ 0.5 requests the paper

draft, s/he only receives a version without the authors

section. Finally, as shown in Figure 11(c), the effects of

configured rules can be verified by the document owner.

For that purpose, artificial metric values can be specified

and the document retrieved in its restricted version for
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(a) Selection of activities for potential information sharing and upload

of potentially shared information (XML document).

(b) Specification of XML elements to share (=sharing view) and con-

ditions of relation metrics (=sharing rules); Definition of individ-

ual views by dynamically creating and parameterizing transformation

scripts (XSLTs).

(c) Verification of rules by specifying synthetic relation data (metrics)

and final publishing of all required artifacts (information, catalog entry,

rules, and view).

Figure 11: Set up sharing of document-based information with trustworthy collaboration partners.

the role of a document consumer, i.e., interested collab-

oration partner. Publishing the document means that the

paper draft is stored in an information repository, a cat-

alog entry is produced that links the document to certain

activities, and generated views and rules are deployed in

the respective backend services.

6.3. End-User Information Sharing Tool

The Web-based tool for exploring shared information

is shown in Figure 12. The user is able to explore his/her

network visualized as (undirected) graph. The collabo-

ration network is established based on past interactions

as discussed previously. The first view in Figure 12(a)

shows a personalized view on the collaboration network

(i.e., based on the member with most connections to

other members). Users with just one single connection

within the network are visualized in a different color.

The link weight is proportional to the number of interac-

tions between network members, thus being a direct in-

dicator for the level of trust. As the next step (see Figure

12(b)), a user explores shared information from another

member. Again, the link weight and trust restrict how

much information is shared between network members.

An example for a shared (restricted) information view

is shown by Figure 12(c). A detailed explanation on ap-

plied rules and transformations is given in the next sec-

tion. We intended to design a lightweight tool for graph

visualization and information sharing. The presented

tool has been implemented on top of state-of-art Web

toolkits and a JavaScript based visualization toolkit6.

6Visualizations for the Web: http://thejit.org/

This has the advantage that collaboration networks can

be visualized without requiring additional client side li-

braries or browser plugins.

7. Design and Implementation

The most basic use case is depicted by Figure 13:

A network member ni (the trustor) has established trust

in his activity collaboration partner n j (the trustee) due

to previous cooperative behavior in a specific scope.

Therefore, the owner (trustor ni) of some information,

identified by an uri, is willed to share this information

with his trustee n j.

n1 n2

a
trust

sharing

scope

uri

trustor trustee

Figure 13: Fundamental sharing scenario.

7.1. Fundamental Mode of Operation

We describe the interplay of the components to cover

the fundamental use case of trustworthy sharing of a

particular information (i.e., that is already referenced

by an uri), of the owner ni with the requester n j. Let

us assume, ni explicitly publishes the uri of an XML

file in a public area of the collaboration platform. User

n j wants to retrieve this information through the REST

interface of the Sharing Proxy, and view in his/her

Browser. That is the point, where trustworthiness comes
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(a) Browse network members. (b) Trusted information discovery. (c) Shared information view.

Figure 12: Browsing shared information in a Web of trust.

into play. The sequential interactions of the single com-

ponents are depicted in Figure 14. The process starts

with retrieving registered meta-data for the given infor-

mation, including the owner and valid a scope of shar-

ing. After that, joint scopes are requested from the Ac-

tivity Management Service, i.e., the scopes of all cur-

rently running joint activities. Then, the sharing rules of

the information owner are retrieved, as well as existing

trust relations in the potential sharing scopes. The Shar-

ing Proxy picks the sharing rule that results in the least

restrictive information. This means sharing relies on the

tightest available trust relation between owner and re-

quester. According to the picked rule, the correspond-

ing XSLT script from the Sharing View Management

Service is requested, as well as the initially requested

information from the Information Repository. Finally,

the initially requested information is transformed to its

trustworthy view and delivered to the requester.

7.2. Implementation Details

The information sharing framework, depicted in Fig-

ure 10, is designed as distributed service-oriented sys-

tem. The backend components and the middleware for

the administration features are implemented as Axis2

Web services with SOAP interfaces (described with

WSDL), and the Sharing Proxy is realized as a Tomcat

Servlet with REST access. In this section we highlight

design decisions and implementation details.

Sharing Proxy Interface. In contrast to the other

components, the Sharing Proxy is not implemented as a

SOAP-based Web service, but as a Servlet with a REST-

ful interface [56]. On the one side, this fact simplifies

the integration with the collaboration portal (JSR-168

portlets7), on the other side, processing pure HTTP re-

quests deem to be more scalable than SOAP messages.

Resource repositories are typical applications for REST-

ful interfaces, where each resource is explicitly identi-

fied by a corresponding uri. The requester is identified

by HTTP authorization in each request, therefore no fur-

ther parameters than the uri of the information of in-

terest is required to enable trusted information sharing.

Table 2 summarizes the available RESTful operations

of the Sharing Proxy.

Op. uri/scopeId/activityId/memberId/listInfos&type=xsd

GET get all information uris (collection overview)

PUT –

POST (registration of information through the admin tool)

DELETE –

Op. uri/scopeId/activityId/memberId/infoURI

GET get information identified by uri

PUT update existing information (only with same XSD)

POST –

DELETE delete information (if the requester is the owner)

Table 2: Sharing Proxy REST-style interface.

The uri for each resource is composed of the uri of

the proxy servlet with additional scopeId, activityId,

memberId, and optional infoURI. If the requester omits

the infoURI, a collection of all information (with op-

tional type selection) identified by the given uri is re-

turned (/listInfos&type=XSD). Restrictions on scopes,

activities, and members are not mandatory, and can be

replaced with anyScope/anyActivity/anyMember. For

instance, links to all shared paper drafts of any com-

7http://jcp.org/aboutJava/communityprocess/final/

jsr168/index.html
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Figure 14: Fundamental interactions of components when retrieving information.

munity member in the scope of ‘scientific dissemina-

tion’, can be found in uri/disseminationScopeId/anyAc-

tivity/anyMember/listInfos&type=paperdraft.xsd.

Trust Network Provider Interface. Network mem-

bers retrieve data about connected neighbors in a

system-managed trust graph (see Listing 3), and can

search for users by name and profile data (similar to

a lightweight service registry). Furthermore, the ser-

vice offers information about someone’s trust relations,

second-hand recommendations, and third-party reputa-

tion.

Member[] getTrustors(Uri mTo, Scope s);
Member[] getTrustees(Uri mFrom, Scope s);
Member[] searchMembers(Scope s, Filter f);
double getTrust(Uri mFrom, mTo, Scope s);
double getRecom(Uri mFrom, Uri mTo, Scope s, Filter f);
double getRep(Uri mTo, Scope s, Filter f);
Metric getMetric(Uri mFrom, mTo, Scope s, String name);
Scope[] getAllScopes(Uri mFrom, Uri mTo);

Listing 3: Trust provider interface excerpt.

Information Definitions and Repository. Shared

information has one of the following origins: (i) infor-

mation that is manually managed by users, such as doc-

uments, notes, and source code in external repositories;

and (ii) information that is generated and managed by

the system according to the context model. All infor-

mation structures are pre-defined by XSDs, provided by

administrators of the platform. Listing 4 shows exem-

plarily a paper draft XSD that is suitable for the aca-

demic research network scenario and further used in the

evaluation part.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:p="http://www.infosys.tuwien.ac.at/tis/papercon"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:import namespace="http://www.infosys.tuwien.ac.at/tis"
schemaLocation="paperconcepts.xsd"/>
<xsd:element name="paperdraft" type="tpaperdraft"/>
<xsd:complexType name="tpaperdraft">
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="author" type="p:author"
maxOccurs="unbounded"/>

<xsd:element name="contact" type="xsd:string"/>
<xsd:element name="category" type="p:category"
maxOccurs="unbounded"/>

<xsd:element name="keywords" type="xsd:string"
maxOccurs="unbounded"/>

<xsd:element name="abstract" type="xsd:string"/>
<xsd:element name="body" type="xsd:string"/>
<xsd:element name="lastChangeAt" type="xsd:dateTime"/>
<xsd:element name="linkedRes" type="xsd:anyURI"
maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="uri" type="xsd:anyURI"
use="required"/>

</xsd:complexType>
</xsd:schema>

Listing 4: XSD for information about paper drafts.

Information Registration. Users register each item

of information that they intend to share in the Infor-

mation Catalog (however, this can be automatized with

more advanced tool support). By creating catalog en-

tries, they link information (identified by uris of XML

data and corresponding XSD(s)) to scopes. In this way,

users decide on their own which information can be

shared in which scopes. Listing 5 shows an excerpt of

the schema of such catalog entries. The main advantage

of separating the actual information (e.g., paper drafts)
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from sharing management data (e.g., scope of sharing,

owner, mode) is that the same information can be linked

to different scopes, and links can be dynamically modi-

fied without affecting the actual information (separation

of concerns). The schema (Listing 5) is designed to en-

able multiple types of search queries, such as retrieving

shared information in a scope, of a specific type (XSD),

of a particular user, or combinations of these parame-

ters.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" ...>
<xsd:element name="entry" type="tEntry"/>
<xsd:complexType name="tEntry">
<xsd:sequence>
<xsd:element name="registeredName" type="xsd:string"/>
<xsd:element name="infoXSD" type="xsd:anyURI"/>
<xsd:element name="infoURI" type="xsd:anyURI"/>
<xsd:element name="owner" type="xsd:anyURI"/>
<xsd:element name="scope" type="xsd:anyURI"/>
<xsd:element name="mode" type="tmode"/>
<xsd:element name="registeredAt" type="xsd:dateTime"/>
<xsd:element name="updatedAt" type="xsd:dateTime"/>
<xsd:element name="comment" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute name="uri" type="xsd:anyURI" use="required"/>
</xsd:complexType>
<!-- tmode omitted -->
</xsd:schema>

Listing 5: Catalog entry schema excerpt.

Sharing Rule Definitions. In addition to catalog

entries, users who want to share information also de-

fine sharing rules that account for dynamically changing

trust relations.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"...>
<xsd:element name="rule" type="tRule"/>
<xsd:complexType name="tRule">
<xsd:sequence>
<xsd:element name="owner" type="xsd:anyURI"/>
<xsd:element name="validScope" type="xsd:anyURI"/>
<xsd:element name="applyOnType" type="xsd:anyURI"/>
<xsd:element name="condition" type="tCondition"/>
<xsd:element name="applyXSLT" type="xsd:anyURI"/>
<!-- ... -->

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="tCondition">
<xsd:sequence>
<xsd:element name="trust" type="tnValop"/>
<xsd:element name="recommendation" type="tnValop"/>
<xsd:element name="reputation" type="tnValop"/>

</xsd:sequence>
</xsd:complexType>
<!-- tnValop omitted -->
</xsd:schema>

Listing 6: Sharing rule schema excerpt.

According to the excerpt in Listing 6, users define in

which scope(s) a rule is valid, and which type of in-

formation (XSD) is concerned. A condition block de-

scribes the actual trust requirements for firing a rule,

e.g., minimum personal trust, recommendation, and

reputation of the requesting community member. The

resulting action is a transformation of the desired infor-

mation (XML) with a pre-defined XSLT script, to filter

content and provide restricted views. If sharing rules

collide, e.g., there is a rule for all information of a given

type, and a second rule that matches the uri of the re-

quested information, the more specific (second) rule is

picked.

Sharing View Definitions. Complex XSLT scripts

for restricting XML-based information are pre-defined

by domain experts (who also define XSDs of informa-

tion types), and selected by end-users when defining

rules.

<?xml version="1.0"?>
<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/...">
<xsl:output method="html" encoding="UTF-8" indent="yes" />
<xsl:template match="/">
<h3>Shared Paper Draft (Restricted View)</h3>
<xsl:apply-templates />

</xsl:template>
<xsl:template match="paperdraft">
Title: <xsl:apply-templates select="title"/> <br/>
Contact: <xsl:apply-templates select="contact"/> <br/>
Categories: <xsl:for-each select="category">

<xsl:apply-templates/>, </xsl:for-each> <br/>
Keywords: <xsl:for-each select="keyword">

<xsl:apply-templates/>, </xsl:for-each> <br/>
</xsl:template>

</xsl:transform>

Listing 7: Exemplary view on paper drafts.

However, for simple document structures, a Web-

based editor for end-users is also available (see Section

6 for details on the end-user tool support). For the exem-

plary paper draft schema in Listing 4, a matching XSLT

could have the structure in Listing 7. After applying

this script, only paper title, a contact person, categories,

and keywords are visible to the requester, while the ac-

tual (co-)authors, abstract, document body, modification

date, and linked resources are omitted. The output of the

transformation process is a HTML fragment that is di-

rectly embedded in a dynamic (X)HTML page and ren-

dered in a Portlet of the Collaboration Portal.

8. Evaluation and Discussion

We evaluate the most critical parts of our framework

that enable trusted information sharing in a dynamically

changing Web of trust. The experiments deal with typi-

cal issues, such as the context-aware mining of interac-

tion logs and processing of complex graph structures.

In particular, we demonstrate (i) the measurement of

interest similarity, (ii) the calculation of support reci-

procity, and performance of inferring trust, (iii) demon-

strate the advantage of adaptive trust updates, and (iv)

measure the end-to-end performance for trusted infor-

mation sharing in dynamic trust networks.

8.1. Experiment Setup

Collaboration Network Generation. Since we have

not yet applied our approach in real large-scale envi-

ronments, we do not have sufficient real testing data.
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(a) average degree d=2. (b) average degree d=4.

Figure 15: Generated scale-free network structures for trust inference

performance studies in hierarchical and democratic communities.

Therefore, we use a mix of captured and synthetic data

to test and discuss trust emergence, update, and aging

mechanisms. We generate artificial scale-free network

structures that we would expect to emerge under real-

istic conditions in science collaboration [50]. For that

purpose, we utilize the preferential attachment model of

Barabasi and Albert [50] to create8 graphs with power-

law distributed degrees depicted910 in Figure 15. These

network structures are the basis to generate interaction

logs that follow a realistic distribution among members.

In both network structures, nodes follow a power-law

distribution. However, in Figure 15(a) we set the av-

erage degree d = 2 which is typical for hierarchical

structures, where most actors receive orders from higher

levels and may delegate them to lower levels. In con-

trast to that, higher average degrees, such as d = 4 in

Figure 15(b) occur predominantly in more democratic

structures, where actors are highly interlinked and may

send and receive tasks from virtually anyone. We focus

on the latter kind of networks that emerge due to support

reciprocity – a property that can only be found in demo-

cratic networks – perfectly fitting to academic science

collaboration.

Trust Model Setup. As described in Section 4,

we infer trust by interpreting various measured met-

rics. One of these metrics in the science collabora-

tion scenario is interest similarity (isim). A second

metric describes the interaction reciprocity (recpr), i.e.,

the willingness to support reliable collaboration part-

ners. Changing interaction behavior is triggered by

varying availability (avail) of actors regarding requests

from other members in the network. This means that

avail is periodically sampled, while trust relations are

updated based on isim and recpr only due to major

8JUNG graph library: http://jung.sourceforge.net
9The node size is proportional to the degree; white nodes represent

hub nodes.
10Note, here graphs consist only of 250 nodes for better visibility.

However, we use graphs with up to 10 000 nodes in our experiments.

changes of avail (or the maximum update interval has

been reached). All three metrics isim, recpr, and avail

have been defined in Section 4.

We argue that these metrics appropriately reflect

trustworthy behavior in science collaboration. In par-

ticular, for successful collaboration mutual interests are

of importance, while also a cooperative behavior (ex-

pressed by support reciprocity) is highly rewarded. In

contrast to science collaboration, in an emergence help

and support environment (see [52]) fast and reliable re-

sponse behavior is of paramount importance; thus, dif-

ferent metrics denote trustworthy behavior there.

Services and Application Hosting. For the fol-

lowing experiments, the interaction logging facilities,

metric calculation modules, and trust inference engine

(see [7] for details) are hosted on a machine with In-

tel Xeon 3.2GHz (quad), 10GB RAM, running Tomcat

6 with Axis2 1.4.1 on Ubuntu Linux, and MySQL 5.0

databases. Furthermore, the Sharing Proxy, Administra-

tion Middleware, and the backend services are hosted

on the same server. The end-user tools, i.e., the Ad-

ministration Tool and Sharing Tool, are implemented in

ASP.NET 3.5 and deployed on an IIS. The client sim-

ulation used to produce concurrent document requests,

runs on a dedicated Pentium 4 with 2GB RAM on Win-

dows XP, and is connected with the server through a

local 100MBit Ethernet.

8.2. Interest Similarity Measurement

As explained in Section 4, the similarity of inter-

ests (expressed in profiles) has influences on trust re-

lations between collaboration partners [28, 29, 30, 31].

In contrast to common top-down approaches that ap-

ply taxonomies and ontologies to define certain skill-,

expertise-, and interest areas, we follow a mining ap-

proach that addresses inherent dynamics of flexible col-

laboration environments. In particular, interests dynam-

ically change over time, but are rarely updated if they

are managed manually in a registry. Hence, we deter-

mine and update them automatically through mining.

For that purpose, we extract keywords of interaction

data (see Listing 1) and potential other sources that char-

acterize an actor’s center of interests.

The creation of interest profiles upon tagging data

has been studied in [29]. That work assumes that users

tag resources, such as bookmarks, pictures, videos, ar-

ticles; and thus express their distinct interests in these

objects. In particular, a dataset from citeulike11 ex-

presses people’s use and understanding of scientific arti-

11http://www.citeulike.org/
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cles through individually assigned tags, which perfectly

matches to our science collaboration scenario.

Table 3: Citeulike tagging data set characteristics.

property name property value

Number of articles 1020622

Number of articles (tagged by > 50 users) 25

Number of distinct tags 287401

Number of distinct tags (used by > 500 users) 272

Number of distinct users 32449

Average number of tags per article 1.2

Average number of users per article 3.5

We use this data (see Table 3) to create interest pro-

files bottom-up based on tags (ATPs - actor tagging pro-

files) and manage them in a vector space model [29].

Whenever actors tag new objects, their ATPs can be up-

dated without requiring manual intervention. However,

since arbitrary tags may be freely assigned – there is

no agreed taxonomy in citeulike – no strict compar-

ison can be performed. Therefore, we cluster tags ac-

cording to their similarities (measured by the frequency

of co-occurrence on the same object) and compare the

actors’ usage of tags on higher cluster levels. For in-

stance, actors using tags belonging to the same cluster

have similar interests, even if they do not use exactly

the same tags. Hierarchical clustering enables us to reg-

ulate the fuzziness of similarity measurements, i.e., the

size of tag clusters. The concrete mechanisms and algo-

rithms are described in [29] and therefore out of scope

of this work. But we outline the evaluation results to

demonstrate the applicability of automatic actor profile

creation and cluster similarity measurement, supporting

the calculation of interest similarities.

We determine for 25 representative citeulike users

(users with more than 50 tags distributed over at least

5 articles) their tagging profiles (ATPs). Then we com-

pare these ATPs (300 comparisons) to find out to which

degree actors use similar/same tags. The fundamental

question is, if we are able to effectively distinguish sim-

ilarities of different degrees among ATPs. In particular,

are some actors indeed more similar in terms of tag us-

age and are they clearly distinguishable from the major-

ity? Figure 16 shows the results of various profile sim-

ilarity measurements. As explained, we compare pro-

files with varying fuzziness, i.e., on 5 different tag clus-

ter levels. While on L5 each tag is in its own cluster,

these clusters are consecutively merged until all tags are

in the same cluster (L0). Hence, on L5 the most fine-

grained comparison is performed, while on L0 all pro-

files are virtually identical (not shown in Figure 16). As

depicted, especially on L3 and L4 a small set of highly

similar ATPs are identified, while the majority is still
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Figure 16: Similarity results among 25 realistic actor tagging profiles

(ATPs).

recognized as clearly different. This is the desired effect

to distinguish interest similarities between a given user

and only a small group of the whole community.

The process of extracting tags and keywords is time-

intensive. Besides retrieving the data, some post-

processing is required; for instance, removing stop

words and ambiguous expressions (e.g., ‘imported’,

‘toread’, ‘paper’) that distort similarity measurements.

The overall performance of this process highly depends

on the utilized data source (e.g., social platform). How-

ever, since interests usually do not change very quickly

the determination of isim is not time-critical, and there-

fore, further performance studies are omitted here.

8.3. Collaboration Network Management

The generated graph structures (Figure 15) are the ba-

sis for creating realistic interaction logs that are used to

conduct some fundamental trust inference performance

studies. For a graph G = (N, E), we generate in to-

tal 100 · |E| interactions between pairs of nodes (ni, n j).

In our experiments we assume that 80% of interactions

take place between 20% of the most active users (re-

flected by hub nodes with high degree). Generated inter-

actions have a particular type (support request/response,

activity success/failure notification) and timestamp, and

occur in one of two abstract scopes. While we payed at-

tention on creating a realistic amount and distribution of

interactions that are closely bound to node degrees, the

interaction properties themselves, i.e., type, timestamp,

do not influence the actual performance study (because

they do not influence the number of required operations

to process the interaction logs). Furthermore, we cre-

ated required collaboration artifacts, including a pool of

activities, some information to be shared, catalog en-

tries, and common sharing rules (accounting for trust
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and recomendation) and sharing views.

Through utilizing available interaction properties, we

calculate three metrics (i) availability (amount of re-

sponded support requests), (ii) interest similarity (based

on extracted tags from successfully finished activities

– see Figure 3), and (iii) support reciprocity (ratio of

served to requested support). Trust in two indepen-

dent abstract scopes is inferred by applying a fuzzy

inference approach (see [6] for details) using the rule

base in Listing 2. (Note, avail will be required in later

experiments.) We measure the required time to com-

pletely process the interaction logs, including reading

logs from the interaction database (SQL), aggregating

logs and calculating metrics, inferring trust, and simple

non-adaptive updates in the trust graph (EMA with α =

0.5). Compared to previous results in [7], we consider-

ably increased the performance by optimizing accesses

to the logging facilities. After each update cycle, gen-

erated interactions for the most recent time interval are

not used any longer and therefore purged. The length

of this interval is fixed, i.e., a single step in the simula-

tion, however in real environments carefully configured

due to interaction sparsity in certain scopes. After each

update cycle recommendations are calculated on top of

the trust graph by computing synthetic transitive rela-

tions [7]. Reputation is determined by the average trust

values of someone’s trustors. The performance results

in Listing 4 underline that especially for large-scale net-

works only a periodic offline calculation is feasible.

Table 4: Trust graph management performance results (in seconds)

for scale-free networks with N nodes and average degree d = 4.

step in trust inference process N = 1 000 N = 10 000

retrieve and parse SOAP logs ≈ 250 ≈ 3 500

calculate metrics avail, recpr, isim 13 128

interpret trust (ism,recpr) 7 72

calculate recommendations 5 49

calculate reputation (> 2 inlinks) < 1 < 1

8.4. Effectiveness of Adaptive Update Strategies

We underline the advantages of selective and adaptive

updates with several evaluation results. For the follow-

ing experiments, we set up a simulation environment

as follows: In contrast to the previous section, where

we measured the performance of the fundamental trust

inference approach upon synthetic interactions, we di-

rectly model different user behavior here to demonstrate

the applicability of adaptive update intervals. In this

round-based simulation the metrics avail, recpr, and

isim are modified for a fixed amount of actors. In par-

ticular, 5%, 10%, and 20% of (erratic) actors change in
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Figure 17: Deviation of trust values (global error) between simulated

network and captured model for differently configured update strate-

gies (λ1 = 1).

each round (with length ts) these metrics randomly be-

tween 1% and 50%. We introduce GR = (N, ER) which

is a graph reflecting the reality, and modify metrics as-

signed to its edges er ∈ ER. The trust model is managed

in GT = (N, ET ) and its edges eτ ∈ ET updated by Al-

gorihtm 1 according to changing metrics in GR.

The main goal of adaptive updates, compared to pe-

riodic intervals, is the reduction of update cycles due to

performance reasons. However, by delaying updates a

deviation (Eq. 8) between GT and GR is introduced that

has to be kept to a minimum. The average deviation

dev(GR,GT ) reflects the effectiveness of update models.

dev(GR,GT ) =

∑
e∈E |τ(er) − τ(eτ)|

|E|
(8)

The proposed update approach in Section 5 has sev-

eral tuning parameters. Among the most important ones

are the settings of minimum and maximum update inter-

vals, configured as ts
umin
≤ ts

u ≤ ts
umax

; whereas ts
umin
= λ1 ·ts

and ts
umax
= λ2 · ts and λ1 ≤ λ2. Hence, λ2 allows to ex-

tend the scheduled updates of stable relations up to ts
umax

and thus, to significantly reduce computational effort.

The introduced global error due to adaptive updates

(compared to fixed interval updates) is expressed as the

average dev(GR,GT ) in percent. Figure 17 depicts this

error for different λ2. In this experiment, the behavior

trigger mechanism (compare Line 21 in Algorithm 1)

has been deactivated. Instead, we decrease ts
u by one ts

after each update operation. Hence, the lengths of fu-

ture update intervals directly depend on the lengths of

recent update intervals, but are only moderately influ-

enced by sudden behavior changes. It is demonstrated

that even for small λ2 considerable error rates are intro-

duced. Since simulated behavior relies on various ran-

domly changed metrics, error bars indicate the spread of
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Figure 18: Deviation of trust values (global error) between simulated

network and captured model for differently configured trigger thresh-

olds ϑt (λ1 = 1, λ2 = 5).

results for multiple runs of this experiment.

Although λ1 determines ts
umin

, there is also an addi-

tional trigger mechanism that initiates immediate up-

dates independent from ts
umin

if actors change their be-

havior very quickly. With the trigger threshold ϑt the

limit of tolerated behavior change without triggering an

immediate update can be set. This threshold is defined

as the deviation in percent of metric values in the inter-

val ts. We trigger behavior changes by frequently ob-

serving the metric avail. With this trigger mechanisms,

an upper limit of global error rate can be guaranteed,

because rapid behavior changes (reflected in GR) are de-

tected and immediate updates of GT performed. Hence,

deviations are not added up over multiple sampling in-

tervals (up to ts
umax

).

Figure 18 visualizes that with the trigger mechanism

in place, the global error rates can be considerably de-

creased. Typically, a higher number of erratic actors

in the network still causes a higher average global error.

The reason for that is a significant amount of actors who

change their behavior slightly below the trigger thresh-

old. Thus, a deviation of GR to GT is caused, but no

updates triggered. However, setting a smaller λ2 results

in a smaller ts
umax

and forces frequent updates; therefore,

introduces an upper limit of global error rates over time.

Since we have now demonstrated that we can keep

the global error rate low, even when we apply adap-

tive updates (especially with a behavior change trigger

in place), we demonstrate now the performance advan-

tages. For that purpose, we utilize a generated graph GR

with 10 000 nodes and 20 000 edges (i.e., d = 4). In

particular, we investigate the average amount of update

operations per ts for differently configured λ2. Higher

λ2 cause less frequent updates of relations. Note, trust

updates of relations are not synchronous, i.e., all at the

same point in time, but time instants are set for each
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Figure 19: Number of processed edges after updating the trust model

according to the simulated network (|E| = 20 000, λ1 = 1).

edge individually in multiples of ts.

Theoretically, without adaptive updates and behav-

ior triggers (i.e., λ1 = λ2 = 1), approximately 20 000

(= |E|) operations per ts would be required to keep the

example graph up to date with an error rate virtually

equal to zero. However, since updates may be post-

poned until ts
umax

if no rapid behavior changes are de-

tected, the number of required update operations in GT

drops exponentially for higher λ2, as shown in Figure

19. The dashed line visualizes the number of updated

edges due to scheduled updates, even if actors do not

change their behavior (then, all updates are performed

in intervals of ts
umax

). The other lines show the upper limit

of performed updates, in the case that the set of relations

with scheduled updates and relations with detected be-

havior changes do not overlap. Usually, the number of

required updates is somewhere between these two lim-

its.

Table 5: Efficiency and effectiveness of adaptive trust updates (λ1 = 1,

ϑt = 10%, amount o f erratic actors = 10%).

λ2 global error [%] average number of updates

1 0 20 000

3 1.7 8 666

5 3.8 6 000

10 5.1 4 000

Finally, Table 5 summarizes previous results by com-

paring introduced global errors and required update op-

erations; thus, demonstrating potential savings.

8.5. End-to-End Information Sharing Performance

The overall process of trusted information sharing

involves several backend services. Communicating

with and retrieving data from these Web services is

time-intensive, especially if they are frequently utilized
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and/or large amounts of data are transferred (and pro-

cessed by respective SOAP stacks). Besides the actual

Information Repository, we identified the Information

Catalog, Sharing View Management Service and Shar-

ing Rule Management Service as the most data-intensive

services. Therefore, we studied the overall performance

when caching different kinds of data. In particular, the

Sharing Proxy implements the caching strategy of self-

pruning cache objects as widely adopted [57].
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Figure 20: Overall performance of the sharing framework.

Figure 20 depicts the required time of the Sharing

Proxy to process different amounts of concurrent client

requests. In detail, we measured the processing time

(i) without any caching mechanisms, (ii) when caching

only rarely changed sharing rules and associated shar-

ing views (XSLTs), (iii) when caching rules, XSLTs,

and catalog entries, (iv) for delivering the response only,

i.e., providing the already transformed and cached in-

formation. The results show that with applying differ-

ent caching strategies the overall performance can be

significantly increased. However, depending on the do-

main’s inherent trust dynamics, a trade-off between per-

formance and up-to-dateness of cached data has to be

carefully considered.

9. Conclusion and Further Work

In this paper we highlighted the application of the

widely adopted MAPE approach for adaptations in

complex interaction networks. Adaptation techniques,

accounting for contextual constraints and emerging so-

cial relations, such as trust, are among the key research

areas in flexible service-oriented collaboration environ-

ments. Instead of a purely conceptual and algorithmic

perspective, we demonstrated the technical grounding,

using state-of-the-art Web services technologies. We

discussed the realization of a framework that supports a

concrete use case, i.e., adaptive information disclosure

in large-scale research communities. The evaluation of

the running framework discovered important design is-

sues, such as the configuration of dynamic trust models

and the need for appropriate caching strategies depend-

ing on the scale of supported networks. Our approach

has important implications on adaptations in complex

systems, because it reduces configuration burdens for

the users and permits self-regulation of shared informa-

tion based on collaboration strength. Our future work

includes the deployment and evaluation of the imple-

mented framework in the EU FP7 project COIN. The

emphasis of COIN is to study new concepts and develop

tools for supporting the collaboration and interoperabil-

ity of networked enterprises. The end-user evaluation

will discover the usability of trust-based adaptive infor-

mation disclosure in real business environments.
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[55] C. Domingo, R. Gavaldà, O. Watanabe, Adaptive sampling

methods for scaling up knowledge discovery algorithms, Data

Min. Knowl. Discov. 6 (2) (2002) 131–152.

[56] R. T. Fielding, Architectural styles and the design of network-

based software architectures, Ph.D. thesis, University of Cali-

fornia, Irvine (2000).

[57] B. D. Goodman, Accelerate your web services with caching,

IBM Advanced Internet Technology, 2002.

26




